VIA ELECTRONIC MAIL

December 9, 2019

Richelle Hanson, Project Manager Voluntary Cleanup Program Maryland Department of the Environment Land and Materials Administration 1800 Washington Blvd., Suite 625 Baltimore, Maryland 21230

Subject: Quarterly Status Report No. 12 - Offsite Area Former Kop-Flex Facility Site, Hanover, Maryland

Dear Richelle:

On behalf of EMERSUB 16 LLC, a subsidiary of Emerson Electric Co., WSP USA Inc. (WSP) is submitting this quarterly status report describing the investigation and remediation activities conducted in the third quarter 2019 in the offsite portion of the Former Kop-Flex Facility Site in Hanover, Maryland. The report also describes the activities planned for the fourth quarter of 2019. In addition to this electronic version, a hard copy of the status report is being submitted to the Maryland Department of Environment (MDE) under separate cover.

If you have any questions concerning the submittal of this status report, please do not hesitate to contact us at 703-709-6500.

Kind regards,

Robert E. Johnson Senior Technical Manager Water & Environment

REJ :rlo k:\emerson\kop-flex_reports_progress reports\mde reports\2019\september 2019

Encl.

 Mr. John Hopkins, U.S. Environmental Protection Agency (EPA), Region III Mr. Stephen Clarke, Emerson Electric Co. Sheila Harvey, Esquire, Pillsbury Winthrop Shaw Pittman

WSP USA Suite 300 13530 Dulles Technology Drive Herndon, VA 20171

Tel.: +1 703 709-6500 Fax: +1 703 709-8505 wsp.com

QUARTERLY STATUS REPORT NO. 12 – OFFSITE AREA FORMER KOP-FLEX FACILITY SITE

July 2019 through September 2019

Site Name: Site Address:	Former Kop-Flex Facility 7565 Harmans Road Hanover, Maryland 21076
Consultant:	WSP USA Inc.
Address:	13530 Dulles Technology Drive, Suite 300
	Herndon, Virginia 20171
Phone No.:	(703) 709-6500
Project Coordinator:	Eric Johnson, WSP USA
Alternate:	Lisa Kelly, WSP USA

1.0 Offsite Activities Conducted During July 2019 through September 2019

1.1 Residential Well Sampling

- Pursuant to MDE's request, water samples were collected from the residential well at 1227 Old Camp Meade Road (Figure 1) on the following dates during the reporting period:
 - July 2, 2019
 - August 1, 2019
 - September 4, 2019

Historical analytical results, including those for the third quarter 2019 samples, are summarized in Table 1. Copies of the certified laboratory analytical reports for the July 2019 through September 2019 sampling events are included in Enclosure A.

— As with samples collected in the first and second quarters 2019, site-related constituents of concern (COCs) were detected in both the untreated and treated water samples, with none of these chemicals present at levels above the applicable groundwater comparative criteria (Table 1). In the pre-treatment samples, concentrations of 1,1-dichloroethene (DCE) ranged from 4.4 micrograms per liter (μ g/l) to 4.8 μ g/l, while 1,4-dioxane was present at levels between 1.7 μ g/l and 2.7 μ g/l. Based on the 2019 sampling data, concentrations of 1,1-DCE in the untreated water have typically ranged from 4 μ g/l to 7 μ g/l (Figure 2), and 1,4-dioxane has varied between 1.5 μ g/l and 3 μ g/l (Figure 3). The post-treatment water samples for the July 2019 through September 2019 events had non-detect concentrations of 1,1-DCE, and 1,4-dioxane concentrations similar to the levels detected in the untreated water (1.7 μ g/l to 2.7 μ g/l). Trace levels (<0.5 μ g/l) of 1,1,1-trichloroethane (TCA) were also detected in both the untreated and treated samples.

EMERSUB 16 and WSP have communicated the analytical results for these water samples in writing to the homeowner and MDE.

1.2 Residential Water Service Connection for 1227 Old Camp Meade Road

 A potable water line easement agreement was prepared and executed between the property owners at 1227 Old Camp Meade Road and at 1229 Old Camp Meade Road in mid-July 2019. This easement agreement will allow for connection of the residence at 1227 Old Camp Meade Road to the county water main located along Reece Road. Recordation of the easement agreement with the deed for 1229 Old Camp Meade Road on file in the Clerk of the Circuit Court Land Records Department for Anne Arundel County, Maryland was completed in late August 2019. WSP also provided an electronic copy of the recorded easement agreement to the Bureau of Utility Operations for the county Department of Public Works (DPW).

- During September 2019, WSP communicated with the Bureau of Utility Operations to finalize the process for installing the water connection to the home at 1227 Old Camp Meade Road. Based on these discussions, the steps for completing the public water service connection will include the following:
 - Payment of all county fees and issuance of the connection permit;
 - Tapping of the Reece Road water main and installation of a water meter box along the west side of the public road right of way by the county DPW; and
 - Installation of the water line from the new meter box to the home by a Master Plumber retained by WSP and EMERSUB 16.

As of the end of the reporting period, WSP and its plumbing subcontractor were in the process of paying the applicable county fees and obtaining the water connection permit.

1.3 Offsite Groundwater Monitoring

— On August 6, 2019, WSP obtained water level measurements from the deep offsite monitoring wells. The depth to water measurements for these monitoring wells are provided in the table below. Historical field measurements and corresponding water level elevations, including the August 2019 data, are provided in Table 2.

WELL ID	HYDROLOGIC UNIT	DEPTH TO WATER (FT BGS)	Well Depth (ft BGS)	Well Screen Interval (ft BGS)
MW-24D	Confined Lower Patapsco	52.37	128	118 – 128
MW-25D-130	Confined Lower Patapsco	60.79	130	120 – 130
MW-25D-192	Confined Lower Patapsco	60.37	192	182 – 192
MW-28D	Confined Lower Patapsco	94.34	210	200 – 210
MW-29D	Confined Lower Patapsco	67.20	151	141 – 151
MW-30D-273	Confined Lower Patapsco	104.74	273	263 – 273
MW-30D-413	Patuxent	145.27	413	403 – 413
MW-31D	Confined Lower Patapsco	113.35	280	270 – 280
MW-32D	Confined Lower Patapsco	99.43	236	226 – 236

wsp

WELL ID	HYDROLOGIC UNIT	DEPTH TO WATER (FT BGS)	Well Depth (ft BGS)	Well Screen Interval (ft BGS)
MW-33D-235	Confined Lower Patapsco	132.76	235	225 – 235
MW-33D-295	Confined Lower Patapsco	131.14	295	285 – 295
MW-34D	Confined Lower Patapsco/Arundel Clay	141.48	385	375 – 385
MW-35D	Confined Lower Patapsco	127.51	298	288 – 298
MW-36D	Patuxent	147.65	360	350 – 360
MW-46D	Confined Lower Patapsco	38.40	90	80 – 90

FT BGS = feet below ground surface

- A potentiometric surface contour map for the confined portion of the Lower Patapsco aquifer south of Maryland Route 100 is shown in Figure 4 using the August 2019 water level measurements. The general direction of groundwater flow in this portion of the aquifer system is to the south-southeast from the former Kop-Flex facility.
- Pursuant to the approval from MDE and USEPA, shallow monitoring wells at the MW-25 and MW-28 locations in the Harmans Woods neighborhood were abandoned in place on August 6, 2019. (The locations of the MW-25 well cluster and MW-28 well pair are shown on Figure 4.) The well decommissioning was performed in accordance with the procedures specified in the Maryland well abandonment standards. The appropriate well abandonment forms were submitted to the MDE and are provided in Enclosure B.

1.4 Evaluation of Monitored Natural Attenuation (MNA) for Groundwater Constituents of Concern

- During the week of August 5th, 2019, groundwater samples were collected from the following deep offsite monitoring wells to characterize the chemical and microbial characteristics of the affected groundwater as they relate to the natural attenuation of 1,1-DCE and 1,4-dioxane (Figure 5).
 - MW-24D
 - MW-25D-130 and MW-25D-190
 - MW-30D-273
 - MW-33D-295

The sampling network was designed to evaluate variability in the characteristics of the offsite groundwater and includes locations with detectable concentrations of COCs at various distances from the source area (*i.e.*, former Kop-Flex facility).

— Samples for VOC and 1,4-dioxane analysis were collected using the previously deployed HydraSleeve[™] samplers, consistent with the method in use for the offsite groundwater monitoring program. Groundwater samples for the

analysis of natural attentuation parameters (listed below), and microbiological and isotopic testing were obtained using the low flow purging method.

- Alkalinity
- Chloride
- Sulfate
- Sulfide
- Dissolved gases (ethene, ethane and methane)

Additionally, field measurements of hydrogeochemical parameters (pH, dissolved oxygen, oxidation-reduction potential, conductivity, and turbidity) and total and ferrous iron were also collected during low flow purging and sampling.

The advanced microbiological and isotopic testing involved deoxyribonucleic acid (DNA)-based diagnostics of oxygenase enzymes that have been found to react co-metabolically with both 1,1-DCE and 1,4-dioxane, and radioactive carbon isotope (¹⁴C) assays for measuring the degradation of radio-labeled 1,4-dioxane spiked into site groundwater. A ¹⁴C assay has not yet been developed for 1,1-DCE; therefore, this test was not performed for this site-related COC. (Information on the use of the ¹⁴C assay method to quantify degradatrion rates is provided in Enclosure C.)

— As of the end of the reporting period, analytical results had been received for the COCs (VOCs and 1,4-dioxane), natural attenuation parameters, and the microbiological tests. A complete evaluation of the sampling data with regards to natural attenuation processes for 1,1-DCE and 1,4-dioxane in the impacted portion of the Lower Patapsco aquifer will be provided following receipt of the ¹⁴C assay results and review of these data together with the other analytical results.

2.0 Planned Offsite Activities for Next Reporting Period (October 2019 through December 2019)

- Collect a synoptic round of water level measurements from the deep offsite monitoring wells in November 2019.
- Perform semi-annual sampling of the offsite groundwater monitoring wells in the confined portion of the Lower Patapsco aquifer and Patuxent aquifer in November 2019.
- Continue to conduct monthly monitoring of the untreated and treated water from the residential well at 1227 Old Camp Meade Road.
- Coordinate with the county DPW to complete the public water service connection to the home at 1227 Old Camp Meade Road by tapping the water main in Reece Road.

3.0 Key Personnel/Facility Changes

In late August, the EPA Project Manager, Erich Weissbart, informed EMERSUB 16 and WSP that he was transitioning toward retirement by the end of October 2019 and would no longer be involved in the oversight of the corrective action activities. Mr. Weissbart indicated that John Hopkins would serve as the new EPA Project Manager for the Site.

FIGURES

€ 69.71	LEGEND PROPERTY LINE STREAM WATER BODY MONITORING WELL RECOVERY WELL GROUNDWATER SURF POTENTIOMETRIC SU (DASHED WHERE INF INFERRED GROUNDW	FACE ELEVATION (FEET RFACE CONTOUR TERRED) ATER FLOW	MSL)	REVISIONS	REV DESCRIPTION	Appr.: Appr.:	Appr.: Appr.: Appr.: Chkd: Revised: Chkd:
				SEAL		AL LE IS S	HE IS A TING DATE
				DRAWN BY EGC	APPROVED RM II/0/10/1	IMPORTANT: THIS DRAWING PRIVILIS LOANNED FOR MUTU ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT A TIME. INFORMATION CONTAINED HEREON IS NOT TO B INSCLOSED OR REPRODUCED IN ANY FORM FOR THE BEN OF PARTIES OTHER THAN INCESSARY SUBGCONTRACTOR	WSP USA INC. WSP UNDER TH DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, IT I UNDER THE DARF AND UNDER THE STATE THIS DOCUMENT IN ANY WAY.
				POTENTIOMETRIC SURFACE CONTOUR MAP	CONFINED PORTION OF THE LOWER PATAPSCO AQUIFER	FORMER KOP-FLEX FACILITY SITE HANOVFR MARYI AND	EMERSUB 16 LLC ST. LOUIS, MISSOURI
							WSP USA Inc. 13530 DULLES TECHNOLOGY DR, SUITE 300 HERNDON, VA 20171 TEL: +1 703.709.6500
THE ORIGINAL VERSION OF THIS COLOR. BLACK AND WHITE COPI ACCURATELY DEPICT CERTAIN IN	O DRAWING IS IN ES MAY NOT FORMATION.	400 800 Scale in Feet	1200	31	FIC Dra 4V15	GURE	4 ^{nber} 11-042

TABLES

Summary Table of Laboratory Results Potable Well Samples 1227 Old Camp Meade Road

		Parameter Units MCL	Acetone μg/l 550 (a)	Bromoform µg/l 80 (a)	Carbon Disulfide μg/l 100 (a)	Chloroform µg/l 80 (a)	1,1- Dichloroethane μg/l 90 (a)	1,1- Dichloroethylene μg/l 7	Methyl Tert Butyl Ether μg/l 20 (a)	Toluene μg/l 1,000	1,1,1- Trichloroethane μg/l 200	Tetrachloroe thylene μg/l 5	Trichloroe thylene μg/l 5	1,4-Dioxane μg/l 4.6 (b)
	G	D (
Address	Dra Traatmant	Date 2/12/2012	5 11	0.5 U	0.19.1	0.5 11	05 U	0.55	0.25 1	0.18.1	0.001 I	05.11	0511	20.11
Address 1227 Old Camp	Pre-Treatment	2/13/2013	5 U	0.5 U	0.18 J	0.3 U	0.5 U	0.55	0.25 J	0.18 J	0.091 J	0.5 U	0.5 U	2.0 U
Maada Rd	Pre-Treatment	7/0/2013	5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.081 J	0.5 U	0.5 U	2.0 0
Well Depth: 300 ft	Pre-Treatment	2/12/2013	51	0.5 U	0.5 U	0.5 U	0.5 0	0.5 U	0.5 U	0.5 U	0.11 J	0.5 U	0.5 U	2.5
iten Bepuit 500 In	Pre-Treatment	5/29/2014	5 0	0.5 U	0.5 U	0.5 U	0.15 J	13	0.5 U	0.5 U	0.5 0	0.5 U	0.5 U	2.0 U
	Post-Treatment	5/29/2014	5 U	0.5 U	0.5 U	0.5 0	0.051 J	05 U	0.5 U	0.5 U	0.15 J	0.5 U	0.5 U	2.0 U
	Pre-Treatment	9/12/2014	5 0	0.5 U	0.5 U	0.1 J	0.5 U	2.0	0.5 U	0.5 U	0.13 J	0.5 U	0.5 U	2.0 U
	Post-Treatment	9/12/2014	5 U	0.28 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.18 J	0.5 U	0.5 U	2.0 U
	Pre-Treatment	12/8/2014	0.99 J	0.5 U	0.5 U	0.5 U	0.5 U	0.43 J	0.5 U	0.5 U	0.20 J	0.5 U	0.5 U	2.0 U
	Post-Treatment	12/8/2014	5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.24 J	0.5 U	0.5 U	2.0 U
	Pre-Treatment	11/3/2016	5 U	0.5 U	0.5 U	0.5 U	0.19 J	8.8	0.5 U	0.5 U	0.48 J	0.5 U	0.5 U	2.9
	Post-Treatment	11/3/2016	5 U	0.5 U	0.5 U	0.095 J	0.16 J	0.5 U	0.5 U	0.5 U	0.42 J	0.5 U	0.5 U	2.7
	Post-Treatment	3/28/2017	5 U	0.5 U	0.5 U	0.5 U	0.17 J	0.5 U	0.5 U	0.5 U	0.41 J	0.5 U	0.5 U	3.4
	Pre-Treatment	7/25/2017	5 U	0.5 U	0.5 U	0.5 U	0.15 J	6.7	0.5 U	0.5 U	0.33 J	0.5 U	0.5 U	3.8
	Post-Treatment	7/25/2017	5 U	0.55	0.5 U	0.5 U	0.19 J	0.5 U	0.5 U	0.5 U	0.42 J	0.5 U	0.5 U	3.1
	Pre-Treatment	9/25/2017	5 U	0.5 U	0.5 U	0.5 U	0.18 J	7.8	0.5 U	0.5 U	0.41 J	0.5 U	0.5 U	4.6
	Post-Treatment	9/25/2017	5 U	0.5 U	0.5 U	0.5 U	0.15 J	1.7	0.5 U	0.5 U	0.37 J	0.5 U	0.5 U	3.5
	Pre-Treatment	10/30/2017	5 U	0.5 U	0.5 U	0.5 U	0.24 J	11.5	0.5 U	0.5 U	0.5	0.5 U	0.5 U	2.6
	Post-Treatment	10/30/2017	5 U	0.5 U	0.5 U	0.5 U	0.23 J	0.5 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	2.6
	Pre-Treatment	11/30/2017	5 U	0.5 U	0.5 U	0.5 U	0.16 J	6.0	0.5 U	0.5 U	0.3 J	0.5 U	0.5 U	2.3
	Post-Treatment	11/30/2017	5 U	0.5 U	0.5 U	0.5 U	0.17 J	1.9	0.5 U	0.5 U	0.34 J	0.5 U	0.5 U	2.4
	Pre-Treatment	12/15/2017	5 U	0.5 U	0.5 U	0.5 U	0.5 U	7.0	0.5 U	0.5 U	0.36 J	0.5 U	0.5 U	2.0
	Post-Treatment	12/15/2017	50	0.5 U	0.5 U	0.5 U	0.5 U	2.8	0.5 U	0.5 U	0.39 J	0.5 U	0.5 U	2.1
	Pre-Treatment	1/11/2018	50	0.5 U	0.5 U	0.5 U	0.15 J	5.3	0.5 U	0.5 U	0.27 J	0.5 U	0.5 U	1.1
	Post-Treatment	2/12/2018	5 0	0.5 U	0.5 U	0.5 U	0.14 J	1.5	0.5 U	0.5 U	0.32 J	0.5 U	0.5 U	1.4
	Pre-Treatment	2/13/2018	5 U	0.5 U	0.5 U	0.5 U	0.16 J	9.5	0.5 U	0.5 U	0.44 J 0.38 J	0.5 U	0.5 U	2.7
	Pre-Treatment	3/29/2018	51	0.5 U	0.5 U	0.5 U	0.10 J	7.5	0.5 U	0.5 U	0.38 J	0.5 U	0.5 U	2.0
	Post-Treatment	3/29/2018	5 U	0.5 U	0.5 U	0.5 U	0.14 J	31	0.5 U	0.5 U	0.35 J	0.5 U	0.5 U	1.0
	Pre-Treatment	4/17/2018	5 0	0.5 U	0.5 U	0.5 U	0.18 J	8.8	0.5 U	0.5 U	0.45 I	0.5 U	0.5 U	3.0
	Post-Treatment	4/17/2018	5 U	0.5 U	0.5 U	0.5 U	0.15 J	2.6	0.5 U	0.5 U	0.37 J	0.5 U	0.5 U	1.8
	Pre-Treatment	5/8/2018	5 U	0.5 U	0.5 U	0.5 U	0.18 J	8.7	0.5 U	0.5 U	0.48 J	0.5 U	0.5 U	3.4
	Post-Treatment	5/8/2018	5 U	0.5 U	0.5 U	0.5 U	0.17 J	0.5 U	0.5 U	0.5 U	0.42 J	0.5 U	0.5 U	2.7
	Pre-Treatment	6/28/2018	1.5 J	0.5 U	0.5 U	0.5 U	0.5 U	5.6	0.5 U	0.5 U	0.28 J	0.5 U	0.5 U	2.5
	Post-Treatment	6/28/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.28 J	0.5 U	0.5 U	2.4
	Pre-Treatment	7/12/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.2
	Post-Treatment	7/12/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.1
	Pre-Treatment	8/9/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.0	0.5 U	0.5 U	0.26 J	0.5 U	0.5 U	2.1
	Post-Treatment	8/9/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.0	0.5 U	0.5 U	0.27 J	0.5 U	0.5 U	2.0
	Pre-Treatment	9/6/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.9	0.5 U	0.5 U	0.28 J	0.5 U	0.5 U	1.6
	Post-Treatment	9/6/2018	2.8 J	0.5 U	0.5 U	0.5 U	0.5 U	3.5	0.5 U	0.5 U	0.33 J	0.5 U	0.5 U	1.7

Summary Table of Laboratory Results Potable Well Samples 1227 Old Camp Meade Road

	Parameter Units MCL	Acetone μg/l 550 (a)	Bromoform µg/l 80 (a)	Carbon Disulfide μg/l 100 (a)	Chloroform µg/l 80 (a)	1,1- Dichloroethane μg/l 90 (a)	1,1- Dichloroethylene µg/l 7	Methyl Tert Butyl Ether µg/l 20 (a)	Toluene μg/l 1,000	1,1,1- Trichloroethane μg/l 200	Tetrachloroe thylene μg/l 5	Trichloroe thylene μg/l 5	1,4-Dioxane μg/l 4.6 (b)
Sample Ty	e Date												
Pre-Treatme	nt 10/3/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.3	0.5 U	0.5 U	0.50 U	0.5 U	0.5 U	1.1
Post-Treatm	ent 10/3/2018	5 U	0.51	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.5 U	0.5 U	1.2
Pre-Treatme	nt 11/7/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.2	0.5 U	0.5 U	0.24 J	0.5 U	0.5 U	2.2
Post-Treatm	ent 11/7/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.7	0.5 U	0.5 U	0.25 J	0.5 U	0.5 U	2.3
Pre-Treatme	nt 12/6/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.9	0.5 U	0.5 U	0.22 J	0.5 U	0.5 U	1.7
Post-Treatm	ent 12/6/2018	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.68	0.5 U	0.5 U	0.27 J	0.5 U	0.5 U	1.7
Pre-Treatme	nt 1/8/2019		0.5 U	0.5 U	0.5 U	0.5 U	6.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.8
Post-Treatm	ent 1/8/2019		0.5 U	0.5 U	0.5 U	0.5 U	3.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.8
Pre-Treatme	nt 2/19/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.7	0.5 U	0.5 U	0.28 J	0.5 U	0.5 U	2.1
Post-Treatm	ent 2/19/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.32 J	0.5 U	0.5 U	1.6
Pre-Treatme	nt 3/7/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	7.1	0.5 U	0.5 U	0.28 J	0.5 U	0.5 U	2.7
Post-Treatm	ent 3/7/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.30 J	0.5 U	0.5 U	2.8
Pre-Treatme	nt 4/2/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.1	0.5 U	0.5 U	0.23 J	0.5 U	0.5 U	2.4
Post-Treatm	ent 4/2/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.56	0.5 U	0.5 U	0.25 J	0.5 U	0.5 U	2.6
Pre-Treatme	nt 5/21/2019	3.1 J	0.5 U	0.5 U	0.5 U	0.5 U	6.4	0.5 U	0.5 U	0.26 J	0.5 U	0.5 U	1.6
Post-Treatm	ent 5/21/2019	2.5 J	0.5 U	0.5 U	0.5 U	0.5 U	0.76	0.5 U	0.5 U	0.14 J	0.5 U	0.5 U	1.7
Pre-Treatme	nt 6/12/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.7	0.5 U	0.5 U	0.23 J	0.5 U	0.5 U	2.6
Post-Treatm	ent 6/12/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.25 J	0.5 U	0.5 U	2.5
Pre-Treatme	nt 7/2/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.7
Post-Treatm	ent 7/2/2019	5 U	0.38 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.24 J	0.5 U	0.5 U	2.7
Pre-Treatme	nt 8/1/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.7
Post-Treatm	ent 8/1/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.22 J	0.5 U	0.5 U	1.8
Pre-Treatme	nt 9/4/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.8	0.5 U	0.5 U	0.25 J	0.5 U	0.5 U	2.0
Post-Treatm	ent 9/4/2019	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.27 J	0.5 U	0.5 U	2.0

(a) Maryland Department of Environment Action Level(b) Maryland Risk Based Action Level

Notes:

MCL = US Environmental Protection Agency Maximum Contaminant Level

U = Undetected, value reported is the laboratory reporting limit

J = Indicates an estimated value between method detection limit and reporting limit

-- = Not analyzed

Table 2

Historical Groundwater Level Data (2017 to Present) Offsite Area Former Kop-Flex Facility Site Hanover, Maryland

			5/	1/2017	8/31/2017		11/1	4/2017	2/1	3/2018	5/31/2018	
Well ID	Zone	TOC elevation	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater
	Lone	(feet MSL)	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
MW-25	Shallow	130.6	14.02	116.58	14.09	116.51	14.6	116.00	14.56	116.04	13.10	117.50
MW-28	Shallow	150.5	27.4	123.10	27.2	123.30	27.22	123.28	27.48	123.02	27.42	123.08
MW-45	Shallow	126.7	13.67	113.05	NM		NM		NM		12.98	113.74
MW-24D	Confined LPA	129.1	48.35	80.75	48.35	80.75	51.99	77.11	NM		50.94	78.16
MW-25D-130	Confined LPA	130.5	53.80	76.70	61.38	69.12	58.46	72.04	58.31	72.19	58.23	72.27
MW-25D-192	Confined LPA	130.5	53.11	77.39	60.36	70.14	58.71	71.79	57.49	73.01	57.40	73.10
MW-28D	Confined LPA	150.5	82.72	67.78	94.55	55.95	89.03	61.47	67.37	83.13	88.75	61.75
MW-29D	Confined LPA	131.9	NM		NM		NM		NM		64.94	66.98
MW-30D-273	Confined LPA	153.5	NM		NM		NM		NM		98.66	54.88
MW-31D	Confined LPA	162.5	100.24	62.26	115.67	46.83	107.21	55.29	106.29	56.21	106.80	55.70
MW-32D	Confined LPA	156.1	NM		NM		NM		NM		97.90	58.24
MW-33D-235	Confined LPA	178.6	117.26	61.34	133.39	45.21	124.55	54.05	123.79	54.81	124.00	54.60
MW-33D-295	Confined LPA	178.3	117.03	61.27	133.14	45.16	124.36	53.94	123.60	54.70	123.83	54.47
MW-34D	Confined LPA	183.9	NM		NM		NM		NM		132.70	51.21
MW-35D	Confined LPA	177.8	117.28	60.52	133.55	44.25	125.59	52.21	124.02	53.78	124.27	53.53
MW-46D	Confined LPA	124.8	NM		NM		NM		NM		37.37	87.43
MW-30D-413	Patuxent	153.1	NM		NM		NM		NM		138.10	15.03
MW-36D	Patuxent	158.7	NM		NM		NM		NM		141.75	16.96

Notes:

NM = no measurement taken at the well

TOC = top of casing

LPA = Lower Patapsco Aquifer

MSL = mean sea level

a/ Measurement is not included due to an error during recordation in the field.

b/ Well decommissioned on August 6, 2019.

Table 2

Historical Groundwater Level Data (2017 to Present) Offsite Area Former Kop-Flex Facility Site Hanover, Maryland

			8/23	3/2018	11/8/2018 2/19/2019		5/22/2	2019	8/6/2	2019		
Well ID	Zone	TOC elevation	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater	_ 1	Groundwater	- 1	Groundwater
		(leet MSL)	Water	Elevation	Water	Elevation	Water	Elevation	Depth to Water	Elevation	Depth to Water	Elevation
MW-25	Shallow	130.6	NM		11.84	118.76	11.75	118.85	NM		(b)	
MW-28	Shallow	150.5	NM		24.33	126.17	23.30	127.20	NM		(b)	
MW-45	Shallow	126.7	NM		12.00	114.72	11.98	114.74	11.75	114.97	NM	
MW-24D	Confined LPA	129.1	NM		50.72	78.38	48.92	80.18	49.67	79.43	52.37	76.73
MW-25D-130	Confined LPA	130.5	59.53	70.97	58.75	71.75	54.96	75.54	56.23	74.27	60.79	69.71
MW-25D-192	Confined LPA	130.5	58.69	71.81	57.63	72.87	54.20	76.30	55.45	75.05	60.37	70.13
MW-28D	Confined LPA	150.5	90.98	59.52	88.30	62.20	84.78	65.72	86.96	63.54	94.24	56.26
MW-29D	Confined LPA	131.9	66.56	65.36	65.03	66.89	60.64	71.28	62.36	69.56	67.20	64.72
MW-30D-273	Confined LPA	153.5	100.70	52.84	98.14	55.40	93.10	60.44	95.74	57.80	104.75	48.79
MW-31D	Confined LPA	162.5	109.95	52.55	106.27	56.23	102.47	60.03	104.91	57.59	113.35	49.15
MW-32D	Confined LPA	156.1	100.65	55.49	98.97	57.17	93.79	62.35	97.02	59.12	99.43	56.71
MW-33D-235	Confined LPA	178.6	127.52	51.08	125.14	53.46	119.35	59.25	121.72	56.88	132.76	45.84
MW-33D-295	Confined LPA	178.3	127.34	50.96	125.69	52.61	119.10	59.20	(a)		131.14	47.16
MW-34D	Confined LPA	183.9	136.42	47.49	131.76	52.15	127.40	56.51	129.93	53.98	141.48	42.43
MW-35D	Confined LPA	177.8	128.19	49.61	123.64	54.16	119.28	58.52	121.65	56.15	127.51	50.29
MW-46D	Confined LPA	124.8	NM		32.68	92.12	NM		35.47	89.33	38.40	86.40
MW-30D-413	Patuxent	153.1	143.75	9.38	140.62	12.51	130.73	22.40	137.25	15.88	145.27	7.86
MW-36D	Patuxent	158.7	146.32	12.39	143.85	14.86	134.83	23.88	141.3	17.41	147.65	11.06

Notes:

NM = no measurement taken at the well

TOC = top of casing

LPA = Lower Patapsco Aquifer

MSL = mean sea level

a/ Measurement is not included due to an error during $\boldsymbol{\imath}$

b/ Well decommissioned on August 6, 2019.

ENCLOSURE A – LABORATORY ANALYTICAL REPORTS FOR RESIDENTIAL WELL SAMPLES (1227 OLD CAMP MEADE ROAD) **JULY 2019**

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

07/16/19

Technical Report for

WSP Environment & Energy

Kop-Flex, Hanover, VA

31401545.001

SGS Job Number: JC91133

Sampling Date: 07/02/19

Report to:

WSP 11190 Sunrise Valley Drive Suite 300 Reston, VA 20190 Eric.Johnson@WSPGroup.com; maria.kaplan@wsp.com

ATTN: Eric Johnson

Total number of pages in report: 42

MEng

Mike Earp General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Rocus Peters 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 42 JC91133

Table of Contents

-N ယ 4 G

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC91133-1: RW-12270CM-070219	6
3.2: JC91133-2: RW-12270CM-070219-F	10
3.3: JC91133-3: TRIP BLANK	14
Section 4: Misc. Forms	18
4.1: Chain of Custody	19
Section 5: MS Volatiles - QC Data Summaries	21
5.1: Method Blank Summary	22
5.2: Blank Spike Summary	26
5.3: Blank Spike/Blank Spike Duplicate Summary	28
5.4: Matrix Spike Summary	29
5.5: Duplicate Summary	33
5.6: Instrument Performance Checks (BFB)	37
5.7: Surrogate Recovery Summaries	41

Sample Summary

WSP Environment & Energy

Job No: JC91133

Kop-Flex, Hanover, VA Project No: 31401545.001

Sample Number	Collected Date	Time By	Received	Matri Code	іх Туре	Client Sample ID
JC91133-1	07/02/19	11:20 SB	07/03/19	AQ	Ground Water	RW-12270CM-070219
JC91133-2	07/02/19	11:15 SB	07/03/19	AQ	Ground Water	RW-12270CM-070219-F
JC91133-3	07/02/19	11:20 SB	07/03/19	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits

Job Number:	JC91133
Account:	WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA
Collected:	07/02/19

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JC91133-1	RW-12270CM-070	219				
1,1-Dichloroethyl 1,4-Dioxane	ene ^a	4.5 2.7	0.50 0.40	0.19 0.095	ug/l ug/l	EPA 524.2 REV 4.1 SW846 8260C BY SIM
JC91133-2	RW-12270CM-070	219-F				
Bromoform ^a	_	0.38 J	0.50	0.27	ug/l	EPA 524.2 REV 4.1
Dibromochlorome	ethane ^a	0.29 J	0.50	0.14	ug/l	EPA 524.2 REV 4.1
1,1,1-Trichloroet	nane ^a	0.24 J	0.50	0.22	ug/l	EPA 524.2 REV 4.1
1,4-Dioxane		2.7	0.40	0.095	ug/l	SW846 8260C BY SIM

JC91133-3 TRIP BLANK

No hits reported in this sample.

(a) EPA 524.2 is not a certified method for non-potable water samples.

N

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

SGS North America Inc.

	Report of Analysis										
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW-12270CM-0702 e ID: JC91133-1 AQ - Ground Water EPA 524.2 REV 4. Kop-Flex, Hanover	219 1 , VA			Date Date Perc	Sampled: Received: ent Solids:	07/02/19 07/03/19 n/a				
Run #1 ^a Run #2	File ID DF 1B120280.D 1	Analyzed 07/12/19 19:25	nalyzed By 7/12/19 19:25 BK		Prep Date n/a		h Analytical Batch V1B5807				
Run #1 Run #2	Purge Volume 5.0 ml										
VOA List											
CAS No.	Compound	Result	RL	MDL	Units	Q					
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 106-43-4 56-23-5	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Chlorobenzene Chlorotenane Chloroform Chloromethane o-Chlorotoluene p-Chlorotoluene Carbon tetrachloride	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 5.0 0.50	$\begin{array}{c} 2.5\\ 0.43\\ 0.16\\ 0.12\\ 0.17\\ 0.13\\ 0.27\\ 0.18\\ 0.068\\ 0.43\\ 0.057\\ 0.18\\ 0.093\\ 0.080\\ 0.17\\ 0.13\\ 0.098\\ 0.075\\ 0.24 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l						
56-23-5 75-34-3 75-35-4 563-58-6 96-12-8 106-93-4 107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3 75-71-8 541-73-1	 Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloropropene 1,2-Dibromo-3-chloropropa 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane Dibromochloromethane Dibromomethane Dichlorodifluoromethane m-Dichlorobenzene 	ND ND 4.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ $	0.24 0.22 0.19 0.14 0.15 0.18 0.19 0.17 0.31 0.14 0.23 0.40 0.14	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l						

MDL = Method Detection Limit ND = Not detected

RL = **Reporting Limit**

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

3<u>1</u> 3

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:RW-12270CM-070Lab Sample ID:JC91133-1Matrix:AQ - Ground WaterMethod:EPA 524.2 REV 4.Project:Kop-Flex, Hanover		RW-12270CM-07021 JC91133-1 AQ - Ground Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	9 VA			Date Date Perc	07/02/19 07/03/19 n/a	
VOA List								
CAS No.	Comp	oound	Result	RL	MDL	Units	Q	
95-50-1	o-Dic	hlorobenzene	ND	0.50	0.14	ug/l		
106-46-7	p-Dic	hlorobenzene	ND	0.50	0.10	ug/l		
156-60-5	trans-	1,2-Dichloroethylene	ND	0.50	0.21	ug/l		
156-59-2	cis-1,2	2-Dichloroethylene	ND	0.50	0.14	ug/l		
10061-02-6	trans-	1,3-Dichloropropene	ND	0.50	0.18	ug/l		
10061-01-5	cis-1,	3-Dichloropropene	ND	0.50	0.16	ug/l		
100-41-4	Ethyll	Denzene	ND	0.50	0.076	ug/l		
87-68-3	Hexac	chlorobutadiene	ND	0.50	0.13	ug/l		
591-78-6	2-Hex	anone	ND	2.0	0.24	ug/l		
98-82-8	Isopro	pylbenzene	ND	0.50	0.054	ug/l		
99-87-6	p-Isop	ropyltoluene	ND	0.50	0.43	ug/l		
75-09-2	Methy	vlene chloride	ND	0.50	0.37	ug/l		
1634-04-4	Methy	I Tert Butyl Ether	ND	0.50	0.11	ug/l		
108-10-1	4-Met	hyl-2-pentanone	ND	2.0	0.22	ug/l		
91-20-3	Napht	halene	ND	0.50	0.28	ug/l		
103-65-1	n-Proj	pylbenzene	ND	0.50	0.066	ug/l		
100-42-5	Styrer		ND	0.50	0.069	ug/l		
630-20-6	1,1,1,	2-Tetrachloroethane	ND	0.50	0.20	ug/l		
71-55-6	1,1,1-	I richloroethane	ND	0.50	0.22	ug/l		
79-34-5	1,1,Z,	Z-1 etrachloroethane	ND	0.50	0.13	ug/l		
79-00-5	1,1,2-	1 richloroethane	ND	0.50	0.19	ug/I		
87-01-0	1,2,3-	1 richlorobenzene	ND	0.50	0.091	ug/I		
96-18-4	1,2,3-	I richloropropane	ND	0.50	0.13	ug/l		
120-82-1	1,2,4-	I richlorobenzene	ND	0.50	0.055	ug/l		
95-63-6	1,2,4-	1 rimetnyibenzene	ND	0.50	0.40	ug/I		
108-07-8	1,3,3- Totao	l rimetnyidenzene		0.50	0.057	ug/l		
127-18-4	Tetrac	chioroethylene		0.50	0.23	ug/1		
100-00-3 70.01.6	Twich	ne oroothyloro		0.50	0.11	ug/1		
79-01-0	Trich	oroeuiyieile orofluoromothono	ND	0.50	0.20	ug/l		
75-05-4	Vinul	olonido	ND	1.0	0.19	ug/1		
75-01-4	v myi	Cilloriue Vulono	ND	0.50	0.15	ug/1		
05_17 B	ш,р-л о.У.л	yiene opo	ND	0.50	0.14 0.076	ug/1 ug/1		
90-47-0 1990 90 7	U-Ayl Vylan	ene es (total)	ND	0.50	0.070	ug/1		
1990-20-7	луien	es (lotal)	IND.	0.00	0.070	ug/1		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
2199-69-1	1,2-D	ichlorobenzene-d4	95%		70-1	30%		
460-00-4	4-Bro	mofluorobenzene	90%		70-1	.30%		

Report of Analysis

ND = Not detected **MDL** = Method Detection Limit **RL** = **Reporting Limit**

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

<u>ω</u>

SGS North America Inc.

Client Sample ID Lab Sample ID: Matrix: Method: Project:	: RW-12270CN JC91133-1 AQ - Ground EPA 524.2 RJ Kop-Flex, Ha	1-070219 Water EV 4.1 nover, VA			Date Date Perc	Sampled: Received: ent Solids:	07/02/19 07/03/19 n/a
VOA List							
CAS No. Con	npound	Result	RL	MDL	Units	Q	

Report of Analysis

(a) EPA 524.2 is not a certified method for non-potable water samples.

- J = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ

<u>ω</u>

Page 3 of 3

8 of 42 JC91133

SGS

			Repo	ort of Ai	nalysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW e ID: JC9 AQ SW Kop	-12270CM-0 1133-1 - Ground Wa 846 8260C B -Flex, Hanov	70219 ater Y SIM ver, VA			Date Date Perc	07/02/19 07/03/19 n/a	
Run #1 Run #2	File ID 3A162546.D	DF D 1	Analyzed 07/10/19 11	By 1:20 RS	Prep D n/a	ate	Prep Batch n/a	n Analytical Batch V3A7041
Run #1 Run #2	Purge Volu 5.0 ml	ne						
CAS No.	Compound	l	Result	RL	MDL	Units	Q	
123-91-1	1,4-Dioxan	e	2.7	0.40	0.095	ug/l		
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	2 Lim	its		
17647-74-4	1,4-Dioxan	e-d8	125%		25-1	l 95 %		

ND = Not detected MDL = Method Detection Limit

RL = **Reporting Limit**

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

9 of 42 JC91133

SGS

E = Indicates value exceeds calibration range

SGS North America Inc.

		alysis		Page 1 of 3			
Client Sam Lab Sample Matrix: Method: Project:	ple ID: RW-12270CM-070215 e ID: JC91133-2 AQ - Ground Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V)-F /A				Sampled: 0 Received: 0 ent Solids: n	7/02/19 7/03/19 /a
Run #1 ^a Run #2	File ID DF A 1B120281.D 1 0	Analyzed 7/12/19 19:56	By BK	Prep Date n/a		Prep Batch n/a	Analytical Batch V1B5807
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene	ND ND ND ND ND 0.38 ND ND ND	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0	2.5 0.43 0.16 0.12 0.17 0.13 0.27 0.18 0.068 0.43 0.957	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	J	
98-06-6 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8	tert-Butylbenzene Carbon disulfide Chlorobenzene Chloroethane Chloroform Chloromethane o-Chlorotoluene	ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.057 0.18 0.093 0.080 0.17 0.13 0.098	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
106-43-4 56-23-5 75-34-3 75-35-4 563-58-6 96-12-8	p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene 1,2-Dibromo-3-chloropropane	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 1.0	0.075 0.24 0.22 0.19 0.14 0.14	ug/l ug/l ug/l ug/l ug/l ug/l		
106-93-4 107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3 75-71-8	1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane Dibromochloromethane Dibromomethane	ND ND ND ND ND 0.29 ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.15 0.18 0.19 0.17 0.31 0.14 0.23 0.40	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	J	
541-73-1	m-Dichlorobenzene	ND	0.50	0.40 0.14	ug/l ug/l		

ND = Not detected **MDL** = Method Detection Limit

RL = **Reporting Limit**

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

3.2 ω

E = Indicates value exceeds calibration range

Г

Client Samp	ole ID:	RW-12270CM-07021	9-F					
Lab Sample	ID:	Date	Sampled:	07/02/19				
Matrix:		AQ - Ground Water				Date	Received:	07/03/19
Method:		EPA 524.2 REV 4.1				Perce	ent Solids:	n/a
Project:		Kop-Flex, Hanover, V	/A					
VOA List								
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
95-50-1	o-Dicł	llorobenzene	ND	0.50	0.14	ug/l		
106-46-7	p-Dich	lorobenzene	ND	0.50	0.10	ug/l		
156-60-5	trans-1	,2-Dichloroethylene	ND	0.50	0.21	ug/l		
156-59-2	cis-1,2-Dichloroethylene		ND	0.50	0.14	ug/l		
10061-02-6	trans-1,3-Dichloropropene		ND	0.50	0.18	ug/l		
10061-01-5	cis-1 ,3	B-Dichloropropene	ND	0.50	0.16	ug/l		
100-41-4	Ethylb	enzene	ND	0.50	0.076	ug/l		
87-68-3	Hexac	hlorobutadiene	ND	0.50	0.13	ug/l		
591-78-6	2-Hex	anone	ND	2.0	0.24	ug/l		
98-82-8	Isopro	pylbenzene	ND	0.50	0.054	ug/l		
99-87-6	p-Isop	ropyltoluene	ND	0.50	0.43	ug/l		
75-09-2	Methy	lene chloride	ND	0.50	0.37	ug/l		
1634-04-4	Methy	l Tert Butyl Ether	ND	0.50	0.11	ug/l		
108-10-1	4-Met	hyl-2-pentanone	ND	2.0	0.22	ug/l		
91-20-3	Napht	halene	ND	0.50	0.28	ug/l		
103-65-1	n-Prop	ylbenzene	ND	0.50	0.066	ug/l		
100-42-5	Styren	e	ND	0.50	0.069	ug/l		
630-20-6	1,1,1,1	2-Tetrachloroethane	ND	0.50	0.20	ug/l		
71-55-6	1,1,1-'	Trichloroethane	0.24	0.50	0.22	ug/l	J	
79-34-5	1,1,2,	2-Tetrachloroethane	ND	0.50	0.13	ug/l		
79-00-5	1,1,2-'	Trichloroethane	ND	0.50	0.19	ug/l		
87-61-6	1,2,3-	Trichlorobenzene	ND	0.50	0.091	ug/l		
96-18-4	1,2,3-'	Trichloropropane	ND	0.50	0.13	ug/l		
120-82-1	1,2,4-'	Trichlorobenzene	ND	0.50	0.055	ug/l		
95-63-6	1,2,4-'	Trimethylbenzene	ND	0.50	0.40	ug/l		
108-67-8	1,3,5-'	Trimethylbenzene	ND	0.50	0.057	ug/l		
127-18-4	Tetrac	hloroethylene	ND	0.50	0.23	ug/l		
108-88-3	Toluer	ie	ND	0.50	0.11	ug/l		
79-01-6	Trichl	oroethylene	ND	0.50	0.20	ug/l		
75-69-4	Trichl	orofluoromethane	ND	1.0	0.19	ug/l		
75-01-4	Vinyl	chloride	ND	0.50	0.15	ug/l		
	m,p-X	ylene	ND	0.50	0.14	ug/l		
95-47-6	o-Xyle	ene	ND	0.50	0.076	ug/l		
1330-20-7	Xylen	es (total)	ND	0.50	0.076	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
2199-69-1	1,2-Di	chlorobenzene-d4	96 %		70-1	30 %		
460-00-4	4-Broi	nofluorobenzene	88%		70-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = **Indicates an estimated value**

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.2

SGS North America Inc.

		Repo	ort of Ai	nalysis				Page 3 of 3
Client Sample ID: Lab Sample ID: Matrix: Method: Project:	RW-12270CM-070219 JC91133-2 AQ - Ground Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	-F A			Date Date Perce	Sampled: Received: ent Solids:	07/02/19 07/03/19 n/a	
VOA List								
CAS No. Com	pound	Result	RL	MDL	Units	Q		

(a) EPA 524.2 is not a certified method for non-potable water samples.

- J = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.2

12 of 42 SGS

			Report	t of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW e ID: JC9 AQ SW3 Kop	-12270CM-0 1133-2 - Ground Wa 846 8260C B -Flex, Hanov	70219-F ater Y SIM ver, VA	Date Date Perc	e Sampled: e Received: ent Solids:	07/02/19 07/03/19 n/a		
Run #1 Run #2	File ID 3A162547.D	DF D 1	Analyzed 07/10/19 11:4	By 9 RS	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V3A7041
Run #1 Run #2	Purge Volu 5.0 ml	ne						
CAS No.	Compound	l	Result	RL	MDL	Units	Q	
123-91-1	1,4-Dioxan	e	2.7	0.40	0.095	ug/l		
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Lim	nits		
17647-74-4	1,4-Dioxan	e-d8	127%		25-1	L 95 %		

ND = Not detected MDL = Method Detection Limit

- **RL** = **Reporting Limit**
- **E** = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

SGS North America Inc.

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	nple ID: TRIP BLANK le ID: JC91133-3 AQ - Trip Blank Wate EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	er VA			Date Date Perc	e Sampled: (e Received: (cent Solids:)	07/02/19 07/03/19 n/a
Run #1 ^a Run #2	File ID DF	Analyzed 07/12/19 14:	By 12 BK	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V1B5807
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1 78-93-3 71-43-2	Acetone 2-Butanone Benzene	ND ND ND	5.0 5.0 0.50	2.5 0.43 0.16	ug/l ug/l ug/l		
108-86-1 74-97-5 75-27-4	Bromobenzene Bromochloromethane Bromodichloromethane	ND ND	0.50 0.50 0.50	0.12 0.17 0.13	ug/l ug/l		
75-25-2 74-83-9	Bromoform Bromomethane	ND ND	0.50 0.50 0.50	0.13 0.27 0.18	ug/l ug/l		
104-51-8 135-98-8 98-06-6	n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ND ND ND	0.50 0.50 0.50	0.068 0.43 0.057	ug/l ug/l ug/l		
75-15-0 108-90-7 75-00-3	Carbon disulfide Chlorobenzene Chloroethane	ND ND ND	0.50 0.50 0.50	0.18 0.093 0.080	ug/l ug/l ug/l		
67-66-3 74-87-3 95-49-8	Chloroform Chloromethane o-Chlorotoluene	ND ND ND	0.50 0.50 0.50	0.17 0.13 0.098	ug/l ug/l ug/l		
106-43-4 56-23-5 75-34-3	p-Chlorotoluene Carbon tetrachloride 1.1-Dichloroethane	ND ND ND	0.50 0.50 0.50	0.075 0.24 0.22	ug/l ug/l ug/l		
75-35-4 563-58-6	1,1-Dichloroethylene 1,1-Dichloropropene 1,2 Dibrome 3 chloropropen	ND ND	0.50 0.50 1.0	0.12 0.19 0.14	ug/l ug/l ug/l		
106-93-4 107-06-2	1,2-Dibromo-3-chioropropan 1,2-Dibromoethane 1,2-Dichloroethane	ND ND	0.50 0.50	0.14 0.15 0.18	ug/l ug/l ug/l		
78-87-5 142-28-9 594-20-7	1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane	ND ND ND	0.50 0.50 0.50	0.19 0.17 0.31	ug/l ug/l ug/l		
124-48-1 74-95-3 75-71-8	Dibromochloromethane Dibromomethane Dichlorodifluoromethane	ND ND ND	0.50 0.50 0.50	0.14 0.23 0.40	ug/l ug/l ug/l		
541-73-1	m-Dichlorobenzene	ND	0.50	0.14	ug/l		

ND = Not detected **MDL** = Method Detection Limit

RL = **Reporting Limit**

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ပ

ω

14 of 42 SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Г

Client Samp	ole ID:	TRIP BLANK						
Lab Sample	ID:	Date	Sampled:	07/02/19				
Matrix:		AQ - Trip Blank Wate	r			Date	Received:	07/03/19
Method:		EPA 524.2 REV 4.1				Perce	ent Solids:	n/a
Project:		Kop-Flex, Hanover, V	/A					
0		•						
VOA List								
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
95-50-1	o-Dicł	nlorobenzene	ND	0.50	0.14	ug/l		
106-46-7	p-Dicl	nlorobenzene	ND	0.50	0.10	ug/l		
156-60-5	trans-1	trans-1,2-Dichloroethylene		0.50	0.21	ug/l		
156-59-2	cis-1.2	cis-1,2-Dichloroethylene		0.50	0.14	ug/l		
10061-02-6	trans-1.3-Dichloropropene		ND	0.50	0.18	ug/l		
10061-01-5	cis-1.3	B-Dichloropropene	ND	0.50	0.16	ug/l		
100-41-4	Ethvlh	enzene	ND	0.50	0.076	8 - 11ø/l		
87-68-3	Hexac	hlorohutadiene	ND	0.50	0.13	ug/1 ug/1		
591-78-6	9-Hev	anone	ND	2 0	0.10	ug/1 ug/l		
98-82-8	Isonro	nvlhenzene	ND	0.50	0.054	ug/1 ug/l		
99-87-6	n-Ison	ronvltoluene	ND	0.50	0.004	ug/1 ug/l		
75-09-2	Mothy	lana chlorida	ND	0.50	0.40	ug/1 ug/l		
1634-04-4	Mothy	d Tart Rutyl Fthar	ND	0.50	0.07	ug/1 ug/l		
108-10-1	4-Methyl-2-pentanone		ND	2 0	0.11	ug/1 ug/l		
01_90_3	Nanhthalene		ND	0.50	0.22	ug/1 ug/l		
51-20-5 102 65 1	Naphthalene		ND	0.50	0.20	ug/1		
103-03-1	II-FIUL Stamon	Jyibenzene	ND	0.50	0.000	ug/1		
100-42-J 620 20 6	1 1 1 1	e 9 Tatrachlaraathana	ND	0.50	0.009	ug/1		
030-20-0 71 55 C	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2-1 eu acinoi oeunane Trichloroothono	ND	0.50	0.20	ug/1		
71-33-0	1,1,1-	9 Totrochlaroothana		0.50	0.22	ug/1		
79-34-3	1,1,2,	2-1 ettacilloi oettalle Trichloroothoro		0.50	0.13	ug/1		
79-00-3 97 61 6	1,1,4-	Trichlonobonzono		0.50	0.19	ug/1		
87-01-0 00 10 4	1,2,3-	Trichlorobenzene		0.50	0.091	ug/1		
90-18-4	1,2,3-	1 richloropropane	ND	0.50	0.13	ug/1		
120-82-1	1,2,4-	1 richlorobenzene	ND	0.50	0.055	ug/I		
95-63-6	1,2,4-	1 rimetnyibenzene	ND	0.50	0.40	ug/I		
108-67-8	1,3,5-	Irimethylbenzene	ND	0.50	0.057	ug/I		
127-18-4	Tetrac	hloroethylene	ND	0.50	0.23	ug/l		
108-88-3	Toluer	ne	ND	0.50	0.11	ug/l		
79-01-6	Trichl	oroethylene	ND	0.50	0.20	ug/l		
75-69-4	Trichl	orofluoromethane	ND	1.0	0.19	ug/l		
75-01-4	Vinyl	chloride	ND	0.50	0.15	ug/l		
	m,p-X	lylene	ND	0.50	0.14	ug/l		
95-47-6	o-Xyle	ene	ND	0.50	0.076	ug/l		
1330-20-7	Xylen	es (total)	ND	0.50	0.076	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
2199-69-1	1,2-Di	ichlorobenzene-d4	97 %		70-1	30%		
460-00-4	160-00-4 4-Bromofluorobenzene 94% 70-			70-1	-130%			

ND = Not detected **MDL** = Method Detection Limit **RL** = **Reporting Limit**

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

ယ ပ

JC91133

SGS North America Inc.

		Repo	rt of An	alysis				Page 3 of 3
Client Sample ID: Lab Sample ID: Matrix: Method: Project:	TRIP BLANKDate Sampled:07/02/19JC91133-3Date Sampled:07/02/19AQ - Trip Blank WaterDate Received:07/03/19EPA 524.2 REV 4.1Percent Solids:n/aKop-Flex, Hanover, VAPercent Solids:n/a							
VOA List								
CAS No. Com	pound	Result	RL	MDL	Units	Q		

(a) EPA 524.2 is not a certified method for non-potable water samples.

- J = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

			Report	of Ana	alysis			Page 1 of 1			
Client Sam Lab Sample Matrix: Method: Project:	ple ID: TRIP e ID: JC911 AQ - SW84 Kop-I	D: TRIP BLANK : JC91133-3 AQ - Trip Blank Water SW846 8260C BY SIM Kop-Flex, Hanover, VA					Date Sampled: 07/02 Date Received: 07/03 Percent Solids: n/a				
Run #1 Run #2	File ID 3A162545.D	DF 1	Analyzed 07/10/19 10:51	By RS	Prep D n/a	ate	Prep Batcl n/a	h Analytical Batch V3A7041			
Run #1 Run #2	Purge Volum 5.0 ml	e									
CAS No.	Compound		Result	RL	MDL	Units	Q				
123-91-1	1,4-Dioxane		ND	0.40	0.095	ug/l					
CAS No.	Surrogate R	Surrogate Recoveries		Run# 2	n# 2 Limits						
17647-74-4	1,4-Dioxane-	d8	126%		25-1	95%					

ND = Not detected MDL = Method Detection Limit

RL = **Reporting Limit**

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ပ

ω

E = Indicates value exceeds calibration range

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

			6		<i>や</i> (CHAIN-C	F-CL	ISTO	DY F	ECO	RD	FXH	101	9 2	.201	50	37	5 691	139	Page 🔟 of
ſ	WSP Parsons Brinckerhoff Office Address			2)0	itar	la 11	/			Requ	lested	Analys	es & P	reserva	atives	1	1	No. 004535	LWS	P PARSONS
ŀ	135 20 DUIRS IECANORY	UNIV IWSPIE	Parsons Brinch	CSCC erhoff Contac	IJI M	(a, v)	/		\neg									Laboratory Name & Loc	ation	
	KOP-Flex	Ē	1C JO	hason					5									5654	Frin	bit
ľ	Project Location	Pric	Parsons Brinci	erhoff Contac	t E-mail	@wspgroup	o.com		2									Laboratory Project Man		/
Ī	Project Number & Task	WSP F	Parsons Brinch	erhoff Conta	ct Phone	·			30									KXUS /	etar,	ſ
	Sampler(s) Name(s)	Sample	er(s) Signature	" <u>~</u>	<u> </u>	·	tainers	Ŝ	an									Standard	1-Time 24 ⊢	R
I	Shappan Burkp	Ĥ	Dog	27	Ber	Jee	of Con	25	00									48 HR	72 H	R
ļ	Sample Identification	Matrix	Collectio	on Start*	Collecti Date	on Stop*	Number	2	-41									Sample Comments		
Į	RW-R270Ch-076219	Sw	7/2	119	117	Ø		X	V											
Į	RW-12270CM-62019-F	6~	7R	19	- († 1.	5		X	X)
ŀ	Trip Blank	Ali		A.			4	X	X		10 NA									V 397
ł														**						
I				inne inne i e d			1													
																			- 999 -	
				-मह्यू		(Alver S			1											851 (J. 1
			V V 1 124. 1			es premo as			2.3			ATR. 31	1	- 40.014	March Harrison				70.000 (co.co.)	taat 1771 oloofeene ol
	de de la competition de la com										10.00		107.N		a I					
				4 - CS	e seat Seats	201 (1) 2 - 09-10 6 - 07-11					a an	12. 11.	100					14 4 - A	R. J.	Case A
ŀ	a Million and San Control of Control o	ana marka 14		ger i singetar	 contained, p.3. 	1.7.295gr/35				(1.1876)) (1.1876)	1.00			1.00万倍	يەربەر د <u>ر مەربە</u>	and a ye	a., 2 (. 4, 2 %)	INITIAL ASES	SMENT	3A DM
			1.03	3 14 J										2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.00			È.	AREI VERI	ICATIO	t
ľ	Relinquished by (Signature) Date	6/19	F j130	Received	By (Signature) イアレ			Dat	2/2,	19	Time		Shipme	nt Meth		1		Tracking Number(s)	101	5087
ŀ	Relinquished By (Signature)	2/10	Time	Received	By (Signature)	7	_	Dat	/ ~/. te	/	Time		i Numbe	r of Paci	kages	<u> </u>		Custody Seal Number(s	<pre></pre>	-007
ŀ	Use stop time/date for composite and/or air samples: use	7/1 7 only start	17-90 t time/date for	all other same	iles.	-			-			Matrix	AQ = An	ueous	S = Sol	, SE = 9	edimen	t, A = Air, W = Wipe, B = I	ر Bulk, Q = Citi	er (detail in commen

JC91133: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number: JC91	133 0	lient:		Project:			
Date / Time Received: 7/3/20)19 9:30:00 AM	Delivery M	ethod:	Airbill #'s:			
Cooler Temps (Raw Measured Cooler Temps (Corrected	 i) °C: Cooler 1 i) °C: Cooler 1 	: (2.8); : (2.5);					
Cooler Security Y 1. Custody Seals Present: ✓ 2. Custody Seals Intact: ✓	or N 3. 4. Sm	COC Present: pl Dates/Time OK	Y or N ✓ □ ✓ □	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete:	<u>Υ</u> ✓	<u>or N</u>	
Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	Y or N ✓ □ IR Gun Ice (Bag) 1			 Sample container label / COC agree: Sample Integrity - Condition Sample recvd within HT: All containers accounted for: Condition of sample: 	Y Y V	or N	
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	Y or N ☑ □ ☑ □ ☑ □			 Sample Integrity - Instructions Analysis requested is clear: Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear: 	Y 2 2 2 2 2 2 2 2 2 2 2 2 2	or N □ □ □ □ □ □	N/A ☑
Test Strip Lot #s: pH	1-12:22	9517	pH 12+:	208717 Other: (Specify)			

SM089-03 Rev. Date 12/7/17

JC91133: Chain of Custody Page 2 of 2

4.1

4

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Surrogate Recovery Summaries

JC91133

Method Blank Summary

Account: E Project: K	ESCVAR WSP E Kop-Flex, Hanov	nvironme er, VA	ent & Energy				
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1B5807-MB	1B120262.D	1	07/12/19	BK	n/a	n/a	V1B5807

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC91133-1, JC91133-2, JC91133-3

CAS No.	Compound	Result	RL	MDL	Units ()
67-64-1	Acetone	ND	5.0	2.5	ug/l	
78-93-3	2-Butanone	ND	5.0	0.43	ug/l	
71-43-2	Benzene	ND	0.50	0.16	ug/l	
108-86-1	Bromobenzene	ND	0.50	0.12	ug/l	
74-97-5	Bromochloromethane	ND	0.50	0.17	ug/l	
75-27-4	Bromodichloromethane	ND	0.50	0.13	ug/l	
75-25-2	Bromoform	ND	0.50	0.27	ug/l	
74-83-9	Bromomethane	ND	0.50	0.18	ug/l	
104-51-8	n-Butylbenzene	ND	0.50	0.068	ug/l	
135-98-8	sec-Butylbenzene	ND	0.50	0.43	ug/l	
98-06-6	tert-Butylbenzene	ND	0.50	0.057	ug/l	
75-15-0	Carbon disulfide	ND	0.50	0.18	ug/l	
108-90-7	Chlorobenzene	ND	0.50	0.093	ug/l	
75-00-3	Chloroethane	ND	0.50	0.080	ug/l	
67-66-3	Chloroform	ND	0.50	0.17	ug/l	
74-87-3	Chloromethane	ND	0.50	0.13	ug/l	
95-49-8	o-Chlorotoluene	ND	0.50	0.098	ug/l	
106-43-4	p-Chlorotoluene	ND	0.50	0.075	ug/l	
56-23-5	Carbon tetrachloride	ND	0.50	0.24	ug/l	
75-34-3	1,1-Dichloroethane	ND	0.50	0.22	ug/l	
75-35-4	1,1-Dichloroethylene	ND	0.50	0.19	ug/l	
563-58-6	1,1-Dichloropropene	ND	0.50	0.14	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	0.50	0.15	ug/l	
107-06-2	1,2-Dichloroethane	ND	0.50	0.18	ug/l	
78-87-5	1,2-Dichloropropane	ND	0.50	0.19	ug/l	
142-28-9	1,3-Dichloropropane	ND	0.50	0.17	ug/l	
594-20-7	2,2-Dichloropropane	ND	0.50	0.31	ug/l	
124-48-1	Dibromochloromethane	ND	0.50	0.14	ug/l	
74-95-3	Dibromomethane	ND	0.50	0.23	ug/l	
75-71-8	Dichlorodifluoromethane	ND	0.50	0.40	ug/l	
541-73-1	m-Dichlorobenzene	ND	0.50	0.14	ug/l	
95-50-1	o-Dichlorobenzene	ND	0.50	0.14	ug/l	
106-46-7	p-Dichlorobenzene	ND	0.50	0.10	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	0.21	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	0.14	ug/l	

5.1.1 G

Method Blank Summary

Job Number: Account: Project:	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA								
Sample	File ID	DF	Analyzed	By	Prep Date				
V1B5807-MB	1B120262.D	1	07/12/19	BK	n/a				

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

Prep Batch

n/a

JC91133-1, JC91133-2, JC91133-3

CAS No.	Compound	Result	RL	MDL	Units	Q
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.16	ug/l	
10061-02-6	trans-1.3-Dichloropropene	ND	0.50	0.18	ug/l	
100-41-4	Ethylbenzene	ND	0.50	0.076	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.50	0.13	ug/l	
591-78-6	2-Hexanone	ND	2.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	0.50	0.054	ug/l	
99-87-6	p-Isopropyltoluene	ND	0.50	0.43	ug/l	
75-09-2	Methylene chloride	ND	0.50	0.37	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	0.11	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	2.0	0.22	ug/l	
91-20-3	Naphthalene	ND	0.50	0.28	ug/l	
103-65-1	n-Propylbenzene	ND	0.50	0.066	ug/l	
100-42-5	Styrene	ND	0.50	0.069	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.13	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	0.50	0.19	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	0.50	0.091	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	0.50	0.13	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	0.055	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	0.40	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	0.057	ug/l	
127-18-4	Tetrachloroethylene	ND	0.50	0.23	ug/l	
108-88-3	Toluene	ND	0.50	0.11	ug/l	
79-01-6	Trichloroethylene	ND	0.50	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.19	ug/l	
75-01-4	Vinyl chloride	ND	0.50	0.15	ug/l	
	m,p-Xylene	ND	0.50	0.14	ug/l	
95-47-6	o-Xylene	ND	0.50	0.076	ug/l	
1330-20-7	Xylenes (total)	ND	0.50	0.076	ug/l	
CAS No.	Surrogate Recoveries		Limits			
2199-69-1	1,2-Dichlorobenzene-d4	99%	70-1309	%		
460-00-4	4-Bromofluorobenzene	99 %	70-1309	%		

Page 2 of 3

Analytical Batch V1B5807

G

Method Blank Summary Job Number: JC91133

ESCVAR WSP E Kop-Flex, Hanov	Environment & ver, VA	& Energy							
File ID 3 1B120262.D	DF 1	Analyzed 07/12/19	zed By Prep Date Prep Batch Anal /19 BK n/a n/a V1B5						
orted here applies to C91133-2, JC91133-	the followin 3	g samples:			Metho	od:			
Tentatively Identifi	ed Compoun	ıds 1	R.T.	Est. Conc.	Units	Q			
system artifact Silanol, trimethyl-		: !	3.70 9.51	1.2 1	ug/l ug/l	J JN			
	ESCVAR WSP E Kop-Flex, Hanov File ID 3 1B120262.D orted here applies to C91133-2, JC91133- Tentatively Identifi system artifact Silanol, trimethyl- Total TIC Volatile	ESCVAR WSP Environment a Kop-Flex, Hanover, VA File ID DF 3 1B120262.D 1 orted here applies to the followin C91133-2, JC91133-3 Tentatively Identified Compoun system artifact Silanol, trimethyl- Total TIC Volatile	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA File ID DF Analyzed B 1B120262.D 1 07/12/19 Orted here applies to the following samples: C91133-2, JC91133-3 Tentatively Identified Compounds I system artifact Silanol, trimethyl- Total TIC Volatile	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA File ID DF Analyzed By B 1B120262.D 1 07/12/19 BK orted here applies to the following samples: C91133-2, JC91133-3 Tentatively Identified Compounds R.T. system artifact 3.70 Silanol, trimethyl- 9.51	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA File ID DF Analyzed By Prep Date 1B120262.D 1 07/12/19 BK n/a	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA File ID DF Analyzed By Prep Date Pro 3 1B120262.D 1 07/12/19 BK n/a n/a orted here applies to the following samples: Metho C91133-2, JC91133-3 Tentatively Identified Compounds R.T. Est. Conc. Units system artifact 3.70 1.2 ug/l Silanol, trimethyl- Total TIC Volatile	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA File ID DF Analyzed By Prep Date Prep Batch 1B120262.D 1 07/12/19 BK n/a n/a orted here applies to the following samples: Method: C91133-2, JC91133-3 Tentatively Identified Compounds R.T. Est. Conc. Units Q system artifact 3.70 1.2 ug/l J Silanol, trimethyl- Silanol, trim		

5.1.1 **5**

JC91133

Method Blank Summary

Job Numbe Account: Project:	r: JC91133 ESCVAR WSP E Kop-Flex, Hanov	Environn ver, VA	nent & Energ	gy				
Sample V3A7041-N	File ID IB 3A162544.D	DF 1	Analyz 07/10/2	zed By 19 RS	Pre n/a	ep Date	Prep Batch n/a	Analytical Batch V3A7041
The QC rep JC91133-1,	ported here applies to JC91133-2, JC91133-	the foll	lowing samp	les:			Method: SW84	6 8260C BY SIM
CAS No.	Compound		Result	RL	MDL	Units	Q	
123-91-1	1,4-Dioxane		ND	0.40	0.095	ug/l		
CAS No.	Surrogate Recoverie	s		Limits				
17647-74-4	1,4-Dioxane-d8		112%	25-195	%			

25 of 42

JC91133

5.1.2

Blank Spike Summary Job Number: JC91133

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm /er, VA	ent & Energy				
Sample V1B5807-BS	File ID 1B120261.D	DF 1	Analyzed 07/12/19	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V1B5807
The QC repor	ted here applies to	the follo	wing samples:			Method: EPA 5	24.2 REV 4.1

JC91133-1, JC91133-2, JC91133-3

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
07 04 1	A	00	10.0	0.0	70 100
07-04-1	Acetone	20	19.2	90	70-130
78-93-3	2-Butanone	20	20.3	102	70-130
71-43-2	Benzene	5	4.9	98	70-130
108-86-1	Bromobenzene	5	4.9	98	70-130
74-97-5	Bromochloromethane	5	5.1	102	70-130
75-27-4	Bromodichloromethane	5	4.9	98	70-130
75-25-2	Bromoform	5	5.7	114	70-130
74-83-9	Bromomethane	5	5.0	100	70-130
104-51-8	n-Butylbenzene	5	5.0	100	70-130
135-98-8	sec-Butylbenzene	5	5.0	100	70-130
98-06-6	tert-Butylbenzene	5	5.0	100	70-130
75-15-0	Carbon disulfide	5	4.9	98	70-130
108-90-7	Chlorobenzene	5	4.7	94	70-130
75-00-3	Chloroethane	5	4.6	92	70-130
67-66-3	Chloroform	5	4.8	96	70-130
74-87-3	Chloromethane	5	4.6	92	70-130
95-49-8	o-Chlorotoluene	5	4.9	98	70-130
106-43-4	p-Chlorotoluene	5	4.7	94	70-130
56-23-5	Carbon tetrachloride	5	5.9	118	70-130
75-34-3	1,1-Dichloroethane	5	4.9	98	70-130
75-35-4	1,1-Dichloroethylene	5	5.1	102	70-130
563-58-6	1,1-Dichloropropene	5	5.0	100	70-130
96-12-8	1,2-Dibromo-3-chloropropane	5	5.1	102	70-130
106-93-4	1.2-Dibromoethane	5	4.8	96	70-130
107-06-2	1.2-Dichloroethane	5	4.9	98	70-130
78-87-5	1.2-Dichloropropane	5	4.7	94	70-130
142-28-9	1.3-Dichloropropane	5	4.5	90	70-130
594-20-7	2.2-Dichloropropane	5	5.4	108	70-130
124-48-1	Dibromochloromethane	5	5.0	100	70-130
74-95-3	Dibromomethane	5	4.8	96	70-130
75-71-8	Dichlorodifluoromethane	5	5.1	102	70-130
541-73-1	m-Dichlorobenzene	5	49	98	70-130
95-50-1	o-Dichlorobenzene	5	4.8	96	70-130
106-46-7	n-Dichlorobenzene	5	4.8	96	70-130
156_60_5	trans_1 9_Dichloroothylono	5	1.0	96	70-130
156_50.9	cis_1 9_Dichloroothylano	5	1.0	04	70-130
130-33-2	US-1,&-DICHIOIOEUIYIEIIE	J	4.1	34	10-130

* = Outside of Control Limits.

Page 1 of 2

Blank Spike Summary

Job Number: Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm ver, VA	ent & Energy				
Sample V1B5807-BS	File ID 1B120261.D	DF 1	Analyzed 07/12/19	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V1B5807
The QC repor	ted here applies to	the follo		Method: EPA 5	24.2 REV 4.1		

JC91133-1, JC91133-2, JC91133-3

CAS No.	Compound	Spike ug/l	BSF ug/l	PBSP %	Limits
10061-01-5	cis-1,3-Dichloropropene	5	4.9	98	70-130
10061-02-6	trans-1.3-Dichloropropene	5	4.9	98	70-130
100-41-4	Ethylbenzene	5	4.7	94	70-130
87-68-3	Hexachlorobutadiene	5	5.2	104	70-130
591-78-6	2-Hexanone	20	18.2	2 91	70-130
98-82-8	Isopropylbenzene	5	4.8	96	70-130
99-87-6	p-Isopropyltoluene	5	5.0	100	70-130
75-09-2	Methylene chloride	5	4.8	96	70-130
1634-04-4	Methyl Tert Butyl Ether	5	4.9	98	70-130
108-10-1	4-Methyl-2-pentanone	20	18.8	94	70-130
91-20-3	Naphthalene	5	4.9	98	70-130
103-65-1	n-Propylbenzene	5	4.8	96	70-130
100-42-5	Styrene	5	4.7	94	70-130
630-20-6	1,1,1,2-Tetrachloroethane	5	5.1	102	70-130
71-55-6	1,1,1-Trichloroethane	5	5.3	106	70-130
79-34-5	1,1,2,2-Tetrachloroethane	5	4.7	94	70-130
79-00-5	1,1,2-Trichloroethane	5	4.7	94	70-130
87-61-6	1,2,3-Trichlorobenzene	5	4.9	98	70-130
96-18-4	1,2,3-Trichloropropane	5	4.8	96	70-130
120-82-1	1,2,4-Trichlorobenzene	5	4.9	98	70-130
95-63-6	1,2,4-Trimethylbenzene	5	4.9	98	70-130
108-67-8	1,3,5-Trimethylbenzene	5	4.9	98	70-130
127-18-4	Tetrachloroethylene	5	4.9	98	70-130
108-88-3	Toluene	5	4.8	96	70-130
79-01-6	Trichloroethylene	5	4.8	96	70-130
75-69-4	Trichlorofluoromethane	5	5.2	104	70-130
75-01-4	Vinyl chloride	5	4.9	98	70-130
	m,p-Xylene	10	9.5	95	70-130
95-47-6	o-Xylene	5	4.9	98	70-130
1330-20-7	Xylenes (total)	15	14.4	96	70-130
CAS No.	Surrogate Recoveries	BSP		Limits	
2199-69-1	1,2-Dichlorobenzene-d4	103%		70-130%	
460-00-4	4-Bromofluorobenzene	99%		70-130%	

* = Outside of Control Limits.

5.2.1

G

Blank Spi Job Number: Account: Project:	ike/Blank Spil JC91133 ESCVAR WSP E Kop-Flex, Hanov	ke Dur Environm ver, VA	olicate ent & En	Sum ergy	mary				Page 1 of 1
Sample V3A7041-BS V3A7041-BSI	File ID 3A162542.D D 3A162543.D	DF 1 1	Ana 07/1 07/1	lyzed 0/19 0/19	By RS RS	Prep Dat n/a n/a	e I r r	Prep Bato 1/a 1/a	ch Analytical Batch V3A7041 V3A7041
The QC repo JC91133-1, J(rted here applies to C91133-2, JC91133-3	the follo	owing sar	nples:			Met	thod: SV	V846 8260C BY SIM
CAS No. C	Compound		Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
123-91-1 1	,4-Dioxane		20	21.5	108	21.9	110	2	48-137/32
CAS No. S	urrogate Recoverie	s	BSP	В	SD	Limits			

108%

25-195%

110%

17647-74-4 1,4-Dioxane-d8

Account: Project:	ESCVAR WSP H Kop-Flex, Hanov	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA											
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch						
JC91356-1MS	1B120269.D	1	07/12/19	BK	n/a	n/a	V1B5807						
JC91356-1	1B120264.D	1	07/12/19	BK	n/a	n/a	V1B5807						
JC91356-1	1B120266.D	10	07/12/19	BK	n/a	n/a	V1B5807						

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC91133-1, JC91133-2, JC91133-3

		JC91356-1		Spike	MS	MS	
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	Limits
	_						
67-64-1	Acetone	ND		20	15.3	77	41-142
78-93-3	2-Butanone	ND		20	20.8	104	55-129
71-43-2	Benzene	ND		5	3.6	72	53-138
108-86-1	Bromobenzene	ND		5	3.7	74	54-138
74-97-5	Bromochloromethane	ND		5	3.7	74	55-140
75-27-4	Bromodichloromethane	ND		5	3.6	72	57-147
75-25-2	Bromoform	ND		5	4.4	88	47-137
74-83-9	Bromomethane	ND		5	5.2	104	40-162
104-51-8	n-Butylbenzene	ND		5	3.8	76	45-144
135-98-8	sec-Butylbenzene	ND		5	3.8	76	46-145
98-06-6	tert-Butylbenzene	ND		5	3.8	76	48-141
75-15-0	Carbon disulfide	ND		5	3.7	74	35-127
108-90-7	Chlorobenzene	ND		5	3.6	72	54-135
75-00-3	Chloroethane	ND		5	5.3	106	38-153
67-66-3	Chloroform	ND		5	3.4	68	57-151
74-87-3	Chloromethane	ND		5	4.6	92	39-165
95-49-8	o-Chlorotoluene	ND		5	3.7	74	55-142
106-43-4	p-Chlorotoluene	ND		5	3.6	72	55-139
56-23-5	Carbon tetrachloride	ND		5	4.6	92	49-170
75-34-3	1,1-Dichloroethane	ND		5	3.7	74	55-149
75-35-4	1,1-Dichloroethylene	ND		5	4.0	80	42-142
563-58-6	1,1-Dichloropropene	ND		5	3.9	78	46-151
96-12-8	1,2-Dibromo-3-chloropropane	ND		5	4.5	90	48-141
106-93-4	1,2-Dibromoethane	ND		5	3.8	76	57-135
107-06-2	1,2-Dichloroethane	ND		5	3.6	72	59-166
78-87-5	1,2-Dichloropropane	ND		5	3.5	70	53-142
142-28-9	1.3-Dichloropropane	ND		5	3.5	70	58-143
594-20-7	2.2-Dichloropropane	ND		5	4.0	80	38-165
124-48-1	Dibromochloromethane	ND		5	3.6	72	55-138
74-95-3	Dibromomethane	ND		5	3.6	72	61-144
75-71-8	Dichlorodifluoromethane	ND		5	5.8	116	23-172
541-73-1	m-Dichlorobenzene	ND		5	3.8	76	53-138
95-50-1	o-Dichlorobenzene	ND		5	3.8	76	54-140
106-46-7	p-Dichlorobenzene	ND		5	3.7	74	53-137
156-60-5	trans-1.2-Dichloroethylene	1.3		5	4.8	70	47-148
156-59-2	cis-1.2-Dichloroethylene	77.0 ^b		5	86.2	-14* a	51-146
200 00 W				~	3018		

* = Outside of Control Limits.

Account: Project:	ESCVAR WSP H Kop-Flex, Hanov	Environm /er, VA	ent & Energy				
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
JC91356-1MS	1B120269.D	1	07/12/19	BK	n/a	n/a	V1B5807
JC91356-1	1B120264.D	1	07/12/19	BK	n/a	n/a	V1B5807
JC91356-1	1B120266.D	10	07/12/19	BK	n/a	n/a	V1B5807

The QC reported here applies to the following samples:

JC91133-1, JC91133-2, JC91133-3

		JC91356	-1	Spike	MS	5	MS	
CAS No.	Compound	ug/l	Q	ug/l	ug/	1	%	Limits
10061-01-5	cis-1,3-Dichloropropene	ND		5	3.5		70	51-136
10061-02-6	trans-1,3-Dichloropropene	ND		5	3.5		70	54-142
100-41-4	Ethylbenzene	ND		5	3.6		72	51-138
87-68-3	Hexachlorobutadiene	ND		5	4.1		82	40-154
591-78-6	2-Hexanone	ND		20	18.	0	90	53-128
98-82-8	Isopropylbenzene	ND		5	3.7		74	49-139
99-87-6	p-Isopropyltoluene	ND		5	3.8		76	45-141
75-09-2	Methylene chloride	ND		5	3.6		72	54-137
1634-04-4	Methyl Tert Butyl Ether	ND		5	3.6		72	53-143
108-10-1	4-Methyl-2-pentanone	ND		20	16.	9	85	58-127
91-20-3	Naphthalene	ND		5	4.1		82	44-140
103-65-1	n-Propylbenzene	ND		5	3.7		74	50-142
100-42-5	Styrene	ND		5	3.5		70	23-130
630-20-6	1,1,1,2-Tetrachloroethane	ND		5	3.8		76	57-144
71-55-6	1,1,1-Trichloroethane	ND		5	4.0		80	52-164
79-34-5	1,1,2,2-Tetrachloroethane	ND		5	4.3		86	58-138
79-00-5	1,1,2-Trichloroethane	ND		5	3.6		72	59-139
87-61-6	1,2,3-Trichlorobenzene	ND		5	3.9		78	47-141
96-18-4	1,2,3-Trichloropropane	ND		5	4.3		86	56-148
120-82-1	1,2,4-Trichlorobenzene	ND		5	3.7		74	46-137
95-63-6	1,2,4-Trimethylbenzene	ND		5	3.7		74	41-138
108-67-8	1,3,5-Trimethylbenzene	ND		5	3.7		74	45-138
127-18-4	Tetrachloroethylene	ND		5	3.8		76	45-145
108-88-3	Toluene	ND		5	3.6		72	52-134
79-01-6	Trichloroethylene	ND		5	3.7		74	54-143
75-69-4	Trichlorofluoromethane	ND		5	5.9		118	36-167
75-01-4	Vinyl chloride	10.5		5	15.	4	98	35-162
	m,p-Xylene	ND		10	7.2		72	49-135
95-47-6	o-Xylene	ND		5	3.5		70	49-134
1330-20-7	Xylenes (total)	ND		15	10.	8	72	50-134
CAS No.	Surrogate Recoveries	MS		JC9135	6-1	JC91	1356-1	Limits
2199-69-1	1,2-Dichlorobenzene-d4	100%		97 %		97 %		70-130%
460-00-4	4-Bromofluorobenzene	99 %		95%		97 %		70-130%

* = Outside of Control Limits.

Method: EPA 524.2 REV 4.1

5.4.1 сл

Account: Project:	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA											
Sample JC91356-1MS JC91356-1 JC91356-1 JC91356-1	File ID 1B120269.D 1B120264.D 1B120266.D	DF 1 1 10	Analyzed 07/12/19 07/12/19 07/12/19	By BK BK BK	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch V1B5807 V1B5807 V1B5807 V1B5807					
The QC report	ted here applies to	the follo	wing samples:			Method: EPA 5	24.2 REV 4.1					

JC91133-1, JC91133-2, JC91133-3

(a) Outside control limits due to high level in sample relative to spike amount.

(b) Result is from Run #2.

5.4.1

G

Kop-Flex, Hanov	er, VA		igy					
File ID 3A162550.D 3A162546.D	DF 1 1	Analy 07/10 07/10	p Date	Analytical Batch V3A7041 V3A7041				
ted here applies to 91133-2, JC91133-3	the follo 3	wing sam	ples	5:			Method: SW84	6 8260C BY SIM
ompound		JC91133 ug/l	8-1 Q	Spike ug/l	MS ug/l	MS %	Limits	
4-Dioxane		2.7		20	25.6	115	28-162	
	File ID 3A162550.D 3A162546.D ted here applies to 91133-2, JC91133- pmpound 4-Dioxane	File ID DF 3A162550.D 1 3A162546.D 1 ted here applies to the follo 91133-2, JC91133-3 ompound 4-Dioxane	File ID DF Analy 3A162550.D 1 07/10 3A162546.D 1 07/10 ted here applies to the following sam 91133-2, JC91133-3 JC91133 ompound ug/l 4-Dioxane 2.7	File ID DF Analyzed 3A162550.D 1 07/10/19 3A162546.D 1 07/10/19 ted here applies to the following samples 91133-2, JC91133-3 JC91133-1 ug/l Q 4-Dioxane 2.7	File IDDFAnalyzedBy3A162550.D107/10/19RS3A162546.D107/10/19RSted here applies to the following samples:91133-2, JC91133-3ompoundJC91133-1Spikeug/lQug/l4-Dioxane2.720	File ID DF Analyzed By Prej 3A162550.D 1 07/10/19 RS n/a 3A162546.D 1 07/10/19 RS n/a ted here applies to the following samples: 91133-2, JC91133-3 pmpound JC91133-1 Spike MS ug/l Q ug/l ug/l ug/l 4-Dioxane 2.7 20 25.6	File ID DF Analyzed By Prep Date 3A162550.D 1 07/10/19 RS n/a 3A162546.D 1 07/10/19 RS n/a ted here applies to the following samples: 91133-2, JC91133-3 ompound JC91133-1 Spike MS MS 4-Dioxane 2.7 20 25.6 115	File ID DF Analyzed By Prep Date Prep Batch 3A162550.D 1 07/10/19 RS n/a n/a 3A162546.D 1 07/10/19 RS n/a n/a ted here applies to the following samples: Method: SW84 91133-2, JC91133-3 JC91133-1 Spike MS MS ompound Ug/l Q ug/l % Limits 4-Dioxane 2.7 20 25.6 115 28-162

CAS No.	Surrogate Recoveries	MS	JC91133-1	Limits
17647-74-4	1,4-Dioxane-d8	117%	125%	25-195%

* = Outside of Control Limits.

5.4.2 5

32 of 42 JC91133

Duplicate Summary Job Number: JC91133

Account:	ESCVAR WSP E	ESCVAR WSP Environment & Energy											
Project:	Kop-Flex, Hanov	Kop-Flex, Hanover, VA											
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch						
JC91356-2DUP	1B120270.D	1	07/12/19	BK	n/a	n/a	V1B5807						
JC91356-2	1B120265.D	1	07/12/19	BK	n/a	n/a	V1B5807						

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC91133-1, JC91133-2, JC91133-3

CAS No.Compoundug/lQug/lQRPDLimits67-64-1AcetoneNDNDnc1078-93-32-ButanoneNDNDnc1271-43-2BenzeneNDNDnc10108-86-1BromobenzeneNDNDnc1074-97-5BromochloromethaneNDNDnc1075-27-4BromodichloromethaneNDNDnc1075-25-2BromoformNDNDnc1074-83-9BromomethaneNDNDnc1074-83-9BromomethaneNDNDnc1075-25-2BromoformNDNDnc1075-25-2BromoformNDNDnc1075-25-2BromoformNDNDnc1075-25-2BromoformNDNDnc1075-25-2BromoformNDNDnc1080-66tert-ButylbenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc1075-63-3ChlorobanzeneNDNDnc1075-64OchlorotolueneNDNDnc1075-73-4OchlorotolueneNDNDnc1075-34-31,1-DichloroethyleneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc1076-35-56<			JC91356	5-2	DUP			
67-64-1 Acetone ND ND nc 10 78-93-3 2-Butanone ND ND nc 12 71-43-2 Benzene ND ND nc 10 108-86-1 Bromobenzene ND ND nc 10 74-97-5 Bromochloromethane ND ND nc 10 75-27-4 Bromoform ND ND nc 10 75-25-2 Bromoform ND ND nc 10 75-25-2 Bromoform ND ND nc 10 74-83-9 Bromomethane ND ND nc 10 74-83-9 Bromomethane ND ND nc 10 98-06-6 tert-Butylbenzene ND ND nc 10 75-15-0 Carbon disulfide ND ND nc 10 76-66-3 Chlorotehane ND ND nc 10 74-87-3	CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits
78-93-3 2-Butanone ND ND nc 12 71-43-2 Benzene ND ND nc 10 108-86-1 Bromobenzene ND ND nc 10 74-97-5 Bromochloromethane ND ND nc 10 75-27-4 Bromodichloromethane ND ND nc 10 75-27-4 Bromodichloromethane ND ND nc 10 75-27-2 Bromoform ND ND nc 10 74-83-9 Bromomethane ND ND nc 10 74-83-9 Bromomethane ND ND nc 10 98-06-6 tert-Butylbenzene ND ND nc 10 98-06-7 Chlorobenzene ND ND nc 10 75-10-3 Chlorobenzene ND ND nc 10 76-6-3 Chloroform ND ND nc 10 95-49-8 o-Chlorotoluene ND ND nc 10 95-43-	67-64-1	Acetone	ND		ND		nc	10
71-43-2BenzeneNDNDnc10108-86-1BromobenzeneNDNDnc1074-97-5BromochloromethaneNDNDnc1075-27-4BromodichloromethaneNDNDnc1075-25-2BromoformNDNDnc1075-25-2BromomethaneNDNDnc1074-83-9BromomethaneNDNDnc10104-51-8n-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc1098-07ChlorobenzeneNDNDnc1075-03ChlorobenzeneNDNDnc1076-63ChloroformNDNDnc1095-49-8o-ChlorotolueneNDNDnc1096-43-4p-ChlorotolueneNDNDnc1096-43-4p-ChlorotolueneNDNDnc1075-35-5Carbon ttrachlorideNDNDnc1096-12-81,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc1096-12-81,2-DichloroethaneNDNDnc </td <td>78-93-3</td> <td>2-Butanone</td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td>nc</td> <td>12</td>	78-93-3	2-Butanone	ND		ND		nc	12
108-86-1BromobenzeneNDNDnc1074-97-5BromochloromethaneNDNDnc1075-27-4BromodichloromethaneNDNDnc1075-27-2BromoformNDNDnc1074-83-9BromomethaneNDNDnc1074-83-9BromomethaneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc1075-00-3ChlorobenzeneNDNDnc1075-00-3ChloroformNDNDnc1095-49-8o-ChlorotolueneNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1075-35-41,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroptopaneNDNDnc10142-28-91,3-DichloroptopaneNDNDnc10142-28-91,3-DichloroptopaneNDNDnc10142-38-11,2-DichloroptopaneND </td <td>71-43-2</td> <td>Benzene</td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td>nc</td> <td>10</td>	71-43-2	Benzene	ND		ND		nc	10
74-97-5BromochloromethaneNDNDnc1075-27-4BromodichloromethaneNDNDnc1075-25-2BromoformNDNDnc1074-83-9BromomethaneNDNDnc10104-51-8n-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc1075-07-7ChlorobenzeneNDNDnc1075-08-3ChloroethaneNDNDnc1075-09-3ChloroethaneNDNDnc1075-09-3ChloroethaneNDNDnc1074-87-3ChloromethaneNDNDnc1095-49-8o-ChlorotolueneNDNDnc1095-49-8o-ChlorotolueneNDNDnc1095-49-8o-ChlorotolueneNDNDnc1096-23-5Carbon tetrachlorideNDNDnc1096-34-31,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloropropaneND <td>108-86-1</td> <td>Bromobenzene</td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td>nc</td> <td>10</td>	108-86-1	Bromobenzene	ND		ND		nc	10
75-27-4BromodichloromethaneNDNDnc1075-25-2BromoformNDNDnc1074-83-9BromomethaneNDNDnc10104-51-8n-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc19108-90-7ChlorobenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc1075-00-3ChloroethaneNDNDnc1067-66-3ChloroformNDNDnc1095-49-8o-ChlorotolueneNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-35-41,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10124-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDND<	74-97-5	Bromochloromethane	ND		ND		nc	10
75-25-2BromoformNDNDNDnc1074-83-9BromomethaneNDNDnc10104-51-8n-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc19108-90-7ChlorobenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc1075-00-3ChlorobenzeneNDNDnc1067-66-3ChlorobenzeneNDNDnc1067-66-3ChloromethaneNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-35-41,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDNDnc10124-48-1DibromochlaneNDND	75-27-4	Bromodichloromethane	ND		ND		nc	10
74-83-9BromomethaneNDNDnc10104-51-8n-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc19108-90-7ChlorobenzeneNDNDnc1075-00-3ChloroethaneNDNDnc1067-66-3ChloroformNDNDnc1067-66-3ChloroformNDNDnc1095-49-8o-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-23-5Carbon tetrachlorideNDNDnc10563-58-61,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc1074-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc1074-95-3DibromochloromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-51-10-Dichlorobenz	75-25-2	Bromoform	ND		ND		nc	10
104-51-8n-ButylbenzeneNDNDnc10135-98-8sec-ButylbenzeneNDNDnc1098-06-6tert-ButylbenzeneNDNDnc19108-90-7ChlorobenzeneNDNDnc1075-15-0Carbon disulfideNDNDnc1075-03ChlorobenzeneNDNDnc1067-66-3ChloroformNDNDnc1095-49-8o-ChlorotolueneNDNDnc1095-49-8o-ChlorotolueneNDNDnc1066-23-5Carbon tetrachlorideNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-35-41,1-DichloroethaneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10107-96-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc1074-95-3DibromochloromethaneNDNDnc10124-48-1DibromochloromethaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1015-50-1 <td< td=""><td>74-83-9</td><td>Bromomethane</td><td>ND</td><td></td><td>ND</td><td></td><td>nc</td><td>10</td></td<>	74-83-9	Bromomethane	ND		ND		nc	10
135-98-8sec-ButylbenzeneNDNDNDnc1098-06-6tert-ButylbenzeneNDNDNDnc19108-90-7ChlorobenzeneNDNDnc1075-15-0ChlorobenzeneNDNDnc1075-00-3ChlorobenzeneNDNDnc1067-66-3ChloroformNDNDnc1067-66-3ChlorobenzeneNDNDnc1095-49-8o-ChlorotolueneNDNDnc1095-49-8o-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1075-34-1,1-DichloroethaneNDNDnc1096-12-8,2-Dibromo-3-chloropropaneNDNDnc10106-93-4,2-Dibromo-3-chloropropaneNDNDnc10107-06-2,2-DichloroptopaneNDNDnc10142-28-9,3-DichloropropaneNDNDnc10142-28-9,3-DichloroptopaneNDNDnc1074-95-3DibromochloromethaneNDNDnc10124-48-1DibromochloromethaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1075-71-8DichlorobenzeneNDNDnc10 <td< td=""><td>104-51-8</td><td>n-Butylbenzene</td><td>ND</td><td></td><td>ND</td><td></td><td>nc</td><td>10</td></td<>	104-51-8	n-Butylbenzene	ND		ND		nc	10
98-06-6tert-BuylbenzeneNDNDnc1075-15-0Carbon disulfideNDNDNDnc19108-90-7ChlorobenzeneNDNDNDnc1075-00-3ChloroethaneNDNDnc1067-66-3ChloroformNDNDnc1274-87-3ChloromethaneNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc1075-71-8DichloropropaneNDNDnc1075-71-8DichlorodethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1056-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10106-46	135-98-8	sec-Butylbenzene	ND		ND		nc	10
75-15-0Carbon disulfideNDNDNDnc19108-90-7ChlorobenzeneNDNDNDnc1075-00-3ChloroethaneNDNDNDnc1067-66-3ChloroformNDNDNDnc1274-87-3ChloromethaneNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1075-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10663-58-61,1-DichloroethyleneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-50-1o-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-DichloroethyleneND <t< td=""><td>98-06-6</td><td>tert-Butylbenzene</td><td>ND</td><td></td><td>ND</td><td></td><td>nc</td><td>10</td></t<>	98-06-6	tert-Butylbenzene	ND		ND		nc	10
108-90-7ChlorobenzeneNDNDNDnc1075-00-3ChloroethaneNDNDNDnc1067-66-3ChloroformNDNDNDnc1274-87-3ChloromethaneNDNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1075-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10107-887-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711** a10	75-15-0	Carbon disulfide	ND		ND		nc	19
75-00-3ChloroethaneNDNDNDnc1067-66-3ChloroformNDNDNDnc1274-87-3ChloromethaneNDNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-35-41,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-0-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.7	108-90-7	Chlorobenzene	ND		ND		nc	10
67-66-3ChloroformNDNDNDnc1274-87-3ChloromethaneNDNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1056-34-31,1-DichloroethaneNDNDnc1075-34-31,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc1054-17-3DibromochloromethaneNDNDnc1055-0-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	75-00-3	Chloroethane	ND		ND		nc	10
74-87-3ChloromethaneNDNDnc1095-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1075-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc1074-95-3DibromochloromethaneNDNDnc1075-71-8DichlorobenzeneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-Dichloroethylene1.91.711* a10	67-66-3	Chloroform	ND		ND		nc	12
95-49-8o-ChlorotolueneNDNDnc10106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1075-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10107-26-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromochloromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711*a10	74-87-3	Chloromethane	ND		ND		nc	10
106-43-4p-ChlorotolueneNDNDnc1056-23-5Carbon tetrachlorideNDNDnc1075-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10107-06-21,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc1054-73-1m-DichlorobenzeneNDNDnc1054-74DibromochloromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc1055-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	95-49-8	o-Chlorotoluene	ND		ND		nc	10
56-23-5Carbon tetrachlorideNDNDnc1075-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10107-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10124-48-1DibromochloropropaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc10545-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	106-43-4	p-Chlorotoluene	ND		ND		nc	10
75-34-31,1-DichloroethaneNDNDnc1075-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc1075-71DibromochloromethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1055-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	56-23-5	Carbon tetrachloride	ND		ND		nc	10
75-35-41,1-DichloroethyleneNDNDnc10563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc1078-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc1074-95-3DibromoethaneNDNDnc1074-95-3DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc10545-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	75-34-3	1,1-Dichloroethane	ND		ND		nc	10
563-58-61,1-DichloropropeneNDNDnc1096-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc1078-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc10545-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	75-35-4	1,1-Dichloroethylene	ND		ND		nc	10
96-12-81,2-Dibromo-3-chloropropaneNDNDnc10106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc1078-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	563-58-6	1,1-Dichloropropene	ND		ND		nc	10
106-93-41,2-DibromoethaneNDNDnc10107-06-21,2-DichloroethaneNDNDnc1078-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	96-12-8	1,2-Dibromo-3-chloropropane	ND		ND		nc	10
107-06-21,2-DichloroethaneNDNDnc1078-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	106-93-4	1,2-Dibromoethane	ND		ND		nc	10
78-87-51,2-DichloropropaneNDNDnc10142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-Dichloroethylene1.91.711* a10	107-06-2	1,2-Dichloroethane	ND		ND		nc	10
142-28-91,3-DichloropropaneNDNDnc10594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	78-87-5	1,2-Dichloropropane	ND		ND		nc	10
594-20-72,2-DichloropropaneNDNDnc10124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	142-28-9	1,3-Dichloropropane	ND		ND		nc	10
124-48-1DibromochloromethaneNDNDnc1074-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	594-20-7	2,2-Dichloropropane	ND		ND		nc	10
74-95-3DibromomethaneNDNDnc1075-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	124-48-1	Dibromochloromethane	ND		ND		nc	10
75-71-8DichlorodifluoromethaneNDNDnc10541-73-1m-DichlorobenzeneNDNDnc1095-50-1o-DichlorobenzeneNDNDnc10106-46-7p-DichlorobenzeneNDNDnc10156-60-5trans-1,2-DichloroethyleneNDNDnc10156-59-2cis-1,2-Dichloroethylene1.91.711* a10	74-95-3	Dibromomethane	ND		ND		nc	10
541-73-1 m-Dichlorobenzene ND ND nc 10 95-50-1 o-Dichlorobenzene ND ND nc 10 106-46-7 p-Dichlorobenzene ND ND nc 10 156-60-5 trans-1,2-Dichloroethylene ND ND nc 10 156-59-2 cis-1,2-Dichloroethylene 1.9 1.7 11* a 10	75-71-8	Dichlorodifluoromethane	ND		ND		nc	10
95-50-1 o-Dichlorobenzene ND ND nc 10 106-46-7 p-Dichlorobenzene ND ND nc 10 156-60-5 trans-1,2-Dichloroethylene ND ND nc 10 156-59-2 cis-1,2-Dichloroethylene 1.9 1.7 11* a 10	541-73-1	m-Dichlorobenzene	ND		ND		nc	10
106-46-7 p-Dichlorobenzene ND ND nc 10 156-60-5 trans-1,2-Dichloroethylene ND ND nc 10 156-59-2 cis-1,2-Dichloroethylene 1.9 1.7 11* a 10	95-50-1	o-Dichlorobenzene	ND		ND		nc	10
156-60-5 trans-1,2-Dichloroethylene ND ND nc 10 156-59-2 cis-1,2-Dichloroethylene 1.9 1.7 11* a 10	106-46-7	p-Dichlorobenzene	ND		ND		nc	10
156-59-2 cis-1,2-Dichloroethylene 1.9 1.7 11* a 10	156-60-5	- trans-1,2-Dichloroethylene	ND		ND		nc	10
	156-59-2	cis-1,2-Dichloroethylene	1.9		1.7		11* a	10

* = Outside of Control Limits.

SGS

Duplicate Summary Job Number: JC91133

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm ver, VA	ent & Energy				
Sample	File ID 18120270 D	DF 1	Analyzed	By BK	Prep Date	Prep Batch	Analytical Batch V1B5807
JC91356-2 JC91356-2	1B120265.D	1	07/12/19	BK	n/a n/a	n/a	V1B5807 V1B5807

The QC reported here applies to the following samples:

JC91133-1, JC91133-2, JC91133-3

		JC91356	5-2	DUP			
CAS No.	Compound	ug/l	Q	ug/l (Q	RPD	Limits
10061-01-5	cis-1 3-Dichloropropaga	ND		ND		nc	10
10001-01-5	trans_1 3-Dichloronronana	ND		ND		nc	10
100-41-4	Fthylbenzene	ND		ND		nc	10
87-68-3	Hexachlorobutadiene	ND		ND		nc	10
591-78-6	2-Hexanone	ND		ND		nc	10
98-82-8	Isonronylbenzene	ND		ND		nc	10
99-87-6	n-Isopropylitoluene	ND		ND		nc	10
75-09-2	Methylene chloride	ND		ND		nc	10
1634-04-4	Methyl Tert Butyl Ether	ND		ND		nc	10
108-10-1	4-Methyl-2-nentanone	ND		ND		nc	10
91-20-3	Nanhthalene	ND		ND		nc	10
103-65-1	n-Pronylbenzene	ND		ND		nc	10
100-42-5	Styrene	ND		ND		nc	10
630-20-6	1.1.1.2-Tetrachloroethane	ND		ND		nc	10
71-55-6	1, 1, 1-Trichloroethane	ND		ND		nc	10
79-34-5	1.1.2.2-Tetrachloroethane	ND		ND		nc	10
79-00-5	1.1.2-Trichloroethane	ND		ND		nc	10
87-61-6	1.2.3-Trichlorobenzene	ND		ND		nc	10
96-18-4	1.2.3-Trichloropropane	ND		ND		nc	10
120-82-1	1.2.4-Trichlorobenzene	ND		ND		nc	10
95-63-6	1.2.4-Trimethylbenzene	ND		ND		nc	10
108-67-8	1.3.5-Trimethylbenzene	ND		ND		nc	10
127-18-4	Tetrachloroethylene	ND		ND		nc	10
108-88-3	Toluene	ND		ND		nc	10
79-01-6	Trichloroethylene	ND		ND		nc	10
75-69-4	Trichlorofluoromethane	ND		ND		nc	10
75-01-4	Vinvl chloride	2.6		2.5		4	10
	m.p-Xvlene	ND		ND		nc	10
95-47-6	o-Xvlene	ND		ND		nc	10
1330-20-7	Xylenes (total)	ND		ND		nc	10
CAS No.	Surrogate Recoveries	DUP		JC91356-2	2	Limits	
2199-69-1	1,2-Dichlorobenzene-d4	98 %		96%		70-1309	%
460-00-4	4-Bromofluorobenzene	95%		94%		70-1309	%

* = Outside of Control Limits.

Method: EPA 524.2 REV 4.1

5.5.1 5

Duplicate Summary Job Number: JC91133

Account:	ESCVAR WSP Environment & Energy							
Project:	Kop-Flex, Hanover, VA							
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
JC91356-2DUP	1B120270.D	1	07/12/19	BK	n/a	n/a	V1B5807	
JC91356-2	1B120265.D	1	07/12/19	BK	n/a	n/a	V1B5807	
The QC report	ed here applies to	the follo	owing samples:			Method: EPA 5	24.2 REV 4.1	

JC91133-1, JC91133-2, JC91133-3

(a) High RPD due to low concentration of hit

5.5.1 **5**

Duplicate Summary

17647-74-4 1,4-Dioxane-d8

Job Number: JC91133 Account: ESCVAR WSP Environment & Energy Project: Kop-Flex. Hanover. VA									
Sample JC91133-2D JC91133-2	File ID UP 3A162552.D 3A162547.D	DF 1 1	Analy 07/10 07/10	/zed /19 /19	l By RS RS		Prep Da n/a n/a	te Prep Batch n/a n/a	Analytical Batch V3A7041 V3A7041
The QC rep JC91133-1, J	orted here applies to C91133-2, JC91133-	the follo	owing sam	ples	5:			Method: SW84	16 8260C BY SIM
CAS No.	Compound		JC91133 ug/l	-2 Q	DUP ug/l	Q	RPD	Limits	
123-91-1	1,4-Dioxane		2.7		2.5		8	48	
CAS No.	Surrogate Recoverie	s	DUP		JC9113	3-2	Limits		

127%

25-195%

120%

SGS

Job Number:	JC91133
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V1B5806-BFBLab File ID:1B120247.DInstrument ID:GCMS1B		Injection Date: 07/11/19 Injection Time: 14:06					
m/e	Ion A	bundance Criteria	Raw Abundance	% Relati Abundar	ive nce	Pass/Fail	
50	14.99 - 40.0% of mass 95		3424	20.0		Pass	
75	30.0 - 80.0% of mass 95		8612	50.4		Pass	
95	Base p	eak, 100% relative abundance	17100	100.0		Pass	
96	5.0 - 9	0.0% of mass 95	1206	7.05		Pass	
173	Less t	han 2.0% of mass 174	0	0.00	(0.00) ^a	Pass	
174	50.0 -	120.0% of mass 95	14298	83.6		Pass	
175	5.0 - 9	0.0% of mass 174	1017	5.95	(7.11) ^a	Pass	
176	95.0 -	101.0% of mass 174	13890	81.2	(97.1) a	Pass	
177	5.0 - 9	0.0% of mass 176	989	5.78	(7.12) ^b	Pass	

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1B5806-IC5806	1B120248.D	07/11/19	14:38	00:32	Initial cal 0.2
V1B5806-IC5806	1B120249.D	07/11/19	15:09	01:03	Initial cal 0.5
V1B5806-IC5806	1B120250.D	07/11/19	15:40	01:34	Initial cal 1
V1B5806-IC5806	1B120251.D	07/11/19	16:11	02:05	Initial cal 2
V1B5806-IC5806	1B120252.D	07/11/19	16:43	02:37	Initial cal 5
V1B5806-ICC5806	1B120253.D	07/11/19	17:14	03:08	Initial cal 10
V1B5806-IC5806	1B120254.D	07/11/19	17:45	03:39	Initial cal 20
V1B5806-IC5806	1B120255.D	07/11/19	18:16	04:10	Initial cal 40
V1B5806-IC5806	1B120256.D	07/11/19	18:47	04:41	Initial cal 80
V1B5806-ICV5806	1B120259.D	07/11/19	20:20	06:14	Initial cal verification 10

G

Job Number:	JC91133
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V1B5807-BFBLab File ID:1B120260.DInstrument ID:GCMS1B		Injection Date: 07/12/19 Injection Time: 08:02						
m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail				
50	14.99 - 40.0% of mass 95	3727	20.3	Pass				
75	30.0 - 80.0% of mass 95	9337	50.8	Pass				
95	Base peak, 100% relative abundance	18382	100.0	Pass				
96	5.0 - 9.0% of mass 95	1241	6.75	Pass				
173	Less than 2.0% of mass 174	0	0.00 (0.00) ^a	Pass				
174	50.0 - 120.0% of mass 95	14062	76.5	Pass				
175	5.0 - 9.0% of mass 174	1146	6.23 (8.15) ^a	Pass				
176	95.0 - 101.0% of mass 174	13442	73.1 (95.6) ^a	Pass				
177	5.0 - 9.0% of mass 176	939	5.11 (6.99) ^b	Pass				

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
V1B5807-CC5806	1B120261.D	07/12/19	08:51	00:49	Continuing cal 5
V1B5807-BS	1B120261.D	07/12/19	08:51	00:49	Blank Spike
V1B5807-MB	1B120262.D	07/12/19	09:28	01:26	Method Blank
ZZZZZZ	1B120263.D	07/12/19	10:04	02:02	(unrelated sample)
JC91356-1	1B120264.D	07/12/19	10:36	02:34	(used for QC only; not part of job JC91133)
JC91356-2	1B120265.D	07/12/19	11:07	03:05	(used for QC only; not part of job JC91133)
JC91356-1	1B120266.D	07/12/19	11:38	03:36	(used for QC only; not part of job JC91133)
ZZZZZZ	1B120267.D	07/12/19	12:09	04:07	(unrelated sample)
ZZZZZZ	1B120268.D	07/12/19	12:40	04:38	(unrelated sample)
JC91356-1MS	1B120269.D	07/12/19	13:10	05:08	Matrix Spike
JC91356-2DUP	1B120270.D	07/12/19	13:42	05:40	Duplicate
JC91133-3	1B120271.D	07/12/19	14:12	06:10	TRIP BLANK
ZZZZZZ	1B120272.D	07/12/19	15:18	07:16	(unrelated sample)
ZZZZZZ	1B120273.D	07/12/19	15:49	07:47	(unrelated sample)
ZZZZZZ	1B120274.D	07/12/19	16:20	08:18	(unrelated sample)
ZZZZZZ	1B120275.D	07/12/19	16:50	08:48	(unrelated sample)
ZZZZZZ	1B120276.D	07/12/19	17:21	09:19	(unrelated sample)
ZZZZZZ	1B120277.D	07/12/19	17:52	09:50	(unrelated sample)
ZZZZZZ	1B120278.D	07/12/19	18:23	10:21	(unrelated sample)
ZZZZZZ	1B120279.D	07/12/19	18:54	10:52	(unrelated sample)
JC91133-1	1B120280.D	07/12/19	19:25	11:23	RW-12270CM-070219
JC91133-2	1B120281.D	07/12/19	19:56	11:54	RW-12270CM-070219-F

G

SGS

Job Number:	JC91133
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V3A6923-BFBLab File ID:3A160428.DInstrument ID:GCMS3A		Injection Date: 07/18/18 Injection Time: 16:55					
m/e	Ion Abundance (Criteria		Raw Abundance	% Relative Abundanc	e e	Pass/Fail
50 75	15.0 - 40.0% of r	nass 95		25408	20.8		Pass
75 95	30.0 - 60.0% of f Base neak 100%	nass 95 relative abundance		62880 121864	51.6 100 0		Pass Pass
96	5.0 - 9.0% of ma	is 95		8101	6.65		Pass
173	Less than 2.0% o	f mass 174		826	0.68	(0.81) a	Pass
174	50.0 - 120.0% of	mass 95		102317	84.0		Pass
175	5.0 - 9.0% of ma	ss 174		8168	6.70	(7.98) ^a	Pass
176	95.0 - 101.0% of	mass 174		100370	82.4	(98.1) ^a	Pass
177	5.0 - 9.0% of ma	ss 176		6691	5.49	(6.67) ^b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V3A6923-IC6923	3A160429.D	07/18/18	17:26	00:31	Initial cal 0.25
V3A6923-IC6923	3A160430.D	07/18/18	17:52	00:57	Initial cal 0.4
V3A6923-IC6923	3A160431.D	07/18/18	18:18	01:23	Initial cal 1
V3A6923-IC6923	3A160432.D	07/18/18	18:43	01:48	Initial cal 2
V3A6923-IC6923	3A160433.D	07/18/18	19:09	02:14	Initial cal 5
V3A6923-ICC6923	3A160434.D	07/18/18	19:35	02:40	Initial cal 20
V3A6923-IC6923	3A160435.D	07/18/18	20:00	03:05	Initial cal 50
V3A6923-IC6923	3A160436.D	07/18/18	20:26	03:31	Initial cal 100
V3A6923-IC6923	3A160437.D	07/18/18	20:52	03:57	Initial cal 200
V3A6923-ICV6923	3A160443.D	07/18/18	23:25	06:30	Initial cal verification 20

S

Job Number:	JC91133
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample: Lab File ID: Instrument ID:		V3A7041-BFB 3A162540.D GCMS3A	Injection Date: 07/10/19 Injection Time: 08:14						
m/e	Ion A	bundance Criteria	Raw Abundan	% Relati ce Abundar	ve nce	Pass/Fail			
50	15.0 -	40.0% of mass 95	15966	21.4		Pass			
75	30.0 -	60.0% of mass 95	37369	50.0		Pass			
95	Base p	eak, 100% relative abundance	74714	100.0		Pass			
96	5.0 - 9	0.0% of mass 95	4946	6.62		Pass			
173	Less t	han 2.0% of mass 174	330	0.44	(0.68) ^a	Pass			
174	50.0 -	120.0% of mass 95	48760	65.3		Pass			
175	5.0 - 9	0.0% of mass 174	4020	5.38	(8.24) a	Pass			
176	95.0 -	101.0% of mass 174	47986	64.2	(98.4) a	Pass			
177	5.0 - 9	0.0% of mass 176	3158	4.23	(6.58) ^b	Pass			

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
		07/10/10	-	-	
V3A7041-CC6923	3A162541.D	07/10/19	08:43	00:29	Continuing cal 5
V3A7041-BS	3A162542.D	07/10/19	09:14	01:00	Blank Spike
V3A7041-BSD	3A162543.D	07/10/19	09:42	01:28	Blank Spike Duplicate
V3A7041-MB	3A162544.D	07/10/19	10:19	02:05	Method Blank
JC91133-3	3A162545.D	07/10/19	10:51	02:37	TRIP BLANK
JC91133-1	3A162546.D	07/10/19	11:20	03:06	RW-12270CM-070219
JC91133-2	3A162547.D	07/10/19	11:49	03:35	RW-12270CM-070219-F
ZZZZZZ	3A162548.D	07/10/19	12:18	04:04	(unrelated sample)
ZZZZZZ	3A162549.D	07/10/19	12:47	04:33	(unrelated sample)
JC91133-1MS	3A162550.D	07/10/19	13:15	05:01	Matrix Spike
JC91133-2DUP	3A162552.D	07/10/19	14:13	05:59	Duplicate

5.6.4

G

Surrogate Recovery Summary

Job Number:	JC91133
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Method: EPA 524.2 REV 4.1

Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab		
Sample ID	File ID	S1	S2
JC91133-1	1B120280.D	95	90
JC91133-2	1B120281.D	96	88
JC91133-3	1B120271.D	97	94
JC91356-1MS	1B120269.D	100	99
JC91356-2DUP	1B120270.D	98	95
V1B5807-BS	1B120261.D	103	99
V1B5807-MB	1B120262.D	99	99
Surrogate		Recove	ery
Compounds		Limits	U
S1 = 1, 2-Dichlor	robenzene-d4	70-130	%
S2 = 4-Bromoflu	iorobenzene	70-130	%

Surrogate Recovery Summary

Job Number:	JC91133
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Method: SW846 8260C BY SIM

Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1
		1.5.5
JC91133-1	3A162546.D	125
JC91133-2	3A162547.D	127
JC91133-3	3A162545.D	126
JC91133-1MS	3A162550.D	117
JC91133-2DUP	3A162552.D	120
V3A7041-BS	3A162542.D	110
V3A7041-BSD	3A162543.D	108
V3A7041-MB	3A162544.D	112
Surrogate		Recovery
Compounds		Limits
S1 = 1, 4-Dioxan	e-d8	25-195%

5.7.2 G

AUGUST 2019

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

08/12/19

Technical Report for

WSP Environment & Energy

Kop-Flex, Hanover, VA

31401545.001

SGS Job Number: JC92613

Sampling Date: 08/01/19

Report to:

WSP 11190 Sunrise Valley Drive Suite 300 Reston, VA 20190 Eric.Johnson@WSPGroup.com; maria.kaplan@wsp.com

ATTN: Eric Johnson

Total number of pages in report: 40

Henry

Mike Earp General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Rocus Peters 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 40 JC92613

Table of Contents

1 2 3 4 5

-1-

3
4
5
6
10
14
18
19
21
22
25
29
32
35
39

Sample Summary

WSP Environment & Energy

Job No: JC92613

Kop-Flex, Hanover, VA Project No: 31401545.001

Sample Number	Collected Date	Time By	Received	Matr Code	ix Type	Client Sample ID
JC92613-1	08/01/19	10:15 CC	08/02/19	DW	Drinking Water	RW-12270CM-080119-F
JC92613-2	08/01/19	10:20 CC	08/02/19	DW	Drinking Water	RW-12270CM-080119
JC92613-3	08/01/19	10:20 CC	08/02/19	DW	Drinking Water TB	TB-080119

Summary of Hits

Job Number:	JC92613
Account:	WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA
Collected:	08/01/19

Lab Sample ID C Analyte	lient Sample ID	Result/ Qual	RL	MDL	Units	Method
JC92613-1 R	W-12270CM-080)119-F				
1,1,1-Trichloroetha 1,4-Dioxane	ne	0.22 J 1.8	0.50 0.40	0.22 0.095	ug/l ug/l	EPA 524.2 REV 4.1 SW846 8260C BY SIM
JC92613-2 R	W-12270CM-080)119				
1,1-Dichloroethylen 1,4-Dioxane	le	4.4 1.7	0.50 0.40	0.19 0.095	ug/l ug/l	EPA 524.2 REV 4.1 SW846 8260C BY SIM
JC92613-3 T	B-080119					
Acetone		4.1 J	5.0	2.5	ug/l	EPA 524.2 REV 4.1

Ν

Dayton, NJ

Section 3 😡

Sample Results

Report of Analysis

SGS North America Inc.

				is		Page 1 of 3			
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: le ID:	RW-122 JC9261 DW - E EPA 52 Kop-Fle	270CM-08011 3-1 Drinking Water 24.2 REV 4.1 ex, Hanover, V	9-F /A			I I F	Date Sampled: Date Received: Percent Solids:	08/01/19 08/02/19 n/a
Run #1 Run #2	File ID 1B1204	45.D	DF 1	Analyzed)8/06/19 12:03	By BK	Prep n/a) Date	Prep Batc n/a	h Analytical Batch V1B5821
Run #1 Run #2	Purge 5.0 ml	Volume							
VOA List									
CAS No.	Comp	ound		Result	MCL	RL	MDL	L Units Q	
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 106-43-4	Aceton 2-Buta Benzer Bromo Bromo Bromo Bromo Bromo n-Buty sec-Bu tert-Bu Carbon Chloro Chloro Chloro Chloro Chloro O-Chloro p-Chloro	ne none benzene ochlorom odichloro oform ^a omethane lbenzene otylbenze n disulfic obenzene oethane oform omethane orotoluen	ethane methane e e e ne e e e e e e	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0	5.0 5.0 0.50	2.5 0.43 0.16 0.12 0.17 0.13 0.27 0.18 0.068 0.43 0.057 0.18 0.093 0.080 0.17 0.13 0.098 0.075	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
56-23-5 75-34-3 75-35-4 563-58-6 96-12-8 106-93-4 107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3 75-71-8 541-73-1	Carbor 1,1-Di 1,1-Di 1,2-Di 1,2-Di 1,2-Di 1,2-Di 2,2-Di 2,2-Di Dibror Dibror Dichlo m-Dic	n tetrach chloroet chloropr bromo-3 bromoet chloropr chloropr chloropr nochlorop nometha prodifluo hloroben	loride ^a hane hylene opene c-chloropropan hane hane opane opane opane omethane ne romethane izene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 7.0 0.20 0.050 5.0 5.0	0.50 0.50 0.50 0.50 1.0 0.50 0.50 0.50 0	0.24 0.22 0.19 0.14 0.15 0.18 0.19 0.17 0.31 0.14 0.23 0.40 0.14	, ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	

MDL = Method Detection Limit ND = Not detectedMCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Г

Client Samj Lab Sample Matrix: Method: Project:	ple ID: RV e ID: JC DV EH Ko	W-12270CM-08011 92613-1 W - Drinking Water PA 524.2 REV 4.1 pp-Flex, Hanover, V	Da Da Pei	Date Sampled: Date Received: Percent Solids:					
VOA List									
CAS No.	Compour	nd	Result	MCL	RL	MDL	Units	Q	
95-50-1	o-Dichlor	obenzene	ND	600	0.50	0.14	ug/l		
106-46-7	p-Dichlor	obenzene	ND	75	0.50	0.10	ug/l		
156-60-5	trans-1.2-	Dichloroethvlene	ND	100	0.50	0.21	ug/l		
156-59-2	cis-1.2-Di	ichloroethvlene	ND	70	0.50	0.14	ug/l		
10061-02-6	trans-1,3-	Dichloropropene	ND		0.50	0.18	ug/l		
10061-01-5	cis-1,3-Di	ichloropropene	ND		0.50	0.16	ug/l		
100-41-4	Ethvlbenz	ene	ND	700	0.50	0.076	ug/l		
87-68-3	Hexachlo	robutadiene	ND		0.50	0.13	ug/l		
591-78-6	2-Hexano	ne	ND		2.0	0.24	ug/l		
98-82-8	Isopropyl	benzene	ND		0.50	0.054	ug/l		
99-87-6	p-Isoprop	vltoluene	ND		0.50	0.43	ug/l		
75-09-2	Methylen	e chloride	ND	5.0	0.50	0.37	ug/l		
1634-04-4	Methvl To	ert Butvl Ether	ND		0.50	0.11	ug/l		
108-10-1	4-Methvl-	2-pentanone	ND		2.0	0.22	ug/l		
91-20-3	Naphthale	ene	ND		0.50	0.28	ug/l		
103-65-1	n-Propylb	enzene	ND		0.50	0.066	ug/l		
100-42-5	Stvrene		ND	100	0.50	0.069	ug/l		
630-20-6	1.1.1.2-T	etrachloroethane	ND		0.50	0.20	ug/l		
71-55-6	1.1.1-Trie	chloroethane	0.22	200	0.50	0.22	ug/l	J	
79-34-5	1.1.2.2-T	etrachloroethane	ND		0.50	0.13	ug/l		
79-00-5	1.1.2-Trie	chloroethane	ND	5.0	0.50	0.19	ug/l		
87-61-6	1.2.3-Trie	chlorobenzene	ND		0.50	0.091	ug/l		
96-18-4	1.2.3-Trio	chloropropane	ND		0.50	0.13	ug/l		
120-82-1	1.2.4-Trie	chlorobenzene	ND	70	0.50	0.055	ug/l		
95-63-6	1.2.4-Tri	nethylbenzene	ND		0.50	0.40	ug/l		
108-67-8	1.3.5-Tri	nethylbenzene	ND		0.50	0.057	ug/l		
127-18-4	Tetrachlo	roethylene	ND	5.0	0.50	0.23	ug/l		
108-88-3	Toluene	j	ND	1000	0.50	0.11	ug/l		
79-01-6	Trichloro	ethylene	ND	5.0	0.50	0.20	ug/l		
75-69-4	Trichloro	fluoromethane	ND		1.0	0.19	ug/l		
75-01-4	Vinvl chlo	oride	ND	2.0	0.50	0.15	ug/l		
	m.n-Xvle	ne	ND		0.50	0.14	"8" 110/l		
95-47-6	o-Xvlene		ND		0.50	0.076	ug/1 11g/1		
1330-20-7	Xylenes (total)	ND	10000	0.50	0.076	ug/l		
CAS No.	Surrogate	e Recoveries	Run# 1	Run#	2	Limits			
2199-69-1	1,2-Dichle	orobenzene-d4	98 %			70-130%			
460-00-4	4-Bromof	luorobenzene	89 %			70-130%			

Report of Analysis

ND = Not detectedMDL = Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω -

ω

SGS North America Inc.

Client Sample ID Lab Sample ID: Matrix: Method: Project:	9: RW-12270Cl JC92613-1 DW - Drinki EPA 524.2 R Kop-Flex, Ha	M-080119-F ng Water EV 4.1 anover, VA		Date Sampled: Date Received: Percent Solids:	08/01/19 08/02/19 n/a	
VOA List						
CAS No. Con	npound	Result	MCL RL	MDL Units Q		

Report of Analysis

(a) Associated CCV outside of control limits high, sample was ND. This compound in BS is outside in house QC criteria bias high.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

ა. ა.

			Report	of A	nalysi	is		Page 1 of 1		
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW-1 e ID: JC926 DW - SW84 Kop-F	RW-12270CM-080119-F JC92613-1 DW - Drinking Water SW846 8260C BY SIM Kop-Flex, Hanover, VA				Da Da Pe	te Sampled: te Received: rcent Solids:	pled: 08/01/19 ived: 08/02/19 plids: n/a		
Run #1 Run #2	File ID 3A162820.D	DF 1	Analyzed 08/08/19 12:54	By RS	Prep n/a) Date	Prep Batc n/a	h Analytical Batch V3A7051		
Run #1 Run #2	Purge Volume 5.0 ml									
CAS No.	Compound		Result	MCL	RL	MDL	Units Q			
123-91-1	1,4-Dioxane		1.8		0.40	0.095	ug/l			
CAS No.	Surrogate Re	coveries	Run# 1	Run#	2 L	imits				
17647-74-4	1,4-Dioxane-	18	98 %		2	5-195%				

N = Indicates presumptive evidence of a compound

<u>ω</u>

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS North America Inc.

	Page 1 of 3						
Client Sam Lab Sampl Matrix: Method: Project:	pple ID: RW-12270CM-080119 le ID: JC92613-2 DW - Drinking Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	A			I I H	Date Sampled: Date Received: Percent Solids:	08/01/19 08/02/19 n/a
Run #1 Run #2	File ID DF A 1B120446.D 1 0	nalyzed 8/06/19 12:34	By BK	Prep n/a	Date	Prep Batcl n/a	h Analytical Batch V1B5821
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List							
CAS No.	Compound	Result	MCL	RL	MDI	L Units Q	
67-64-1 78-93-3	Acetone 2-Butanone	ND ND		5.0 5.0	2.5 0.43	ug/l ug/l	
71-43-2 108-86-1	Benzene Bromobenzene	ND ND	5.0	0.50 0.50	0.16 0.12	ug/l ug/l	
74-97-5 75-27-4	Bromochloromethane Bromodichloromethane	ND ND		0.50 0.50	0.17	ug/l ug/l	
75-25-2 74-83-9 104-51-8	Bromotorm « Bromomethane n-Butylbonzone	ND ND ND		0.50 0.50 0.50	0.27	ug/l ug/l	
135-98-8 98-06-6	sec-Butylbenzene tert-Butylbenzene	ND ND ND		0.50 0.50 0.50	0.000	ug/l ug/l ug/l	
75-15-0 108-90-7	Carbon disulfide Chlorobenzene	ND ND	100	0.50 0.50	0.18 0.093	ug/l B ug/l	
75-00-3 67-66-3	Chloroethane Chloroform	ND ND		0.50 0.50	0.080) ug/l ug/l	
74-87-3 95-49-8 106-43-4	Chloromethane o-Chlorotoluene p-Chlorotoluene	ND ND ND		0.50 0.50 0.50	0.13	ug/l B ug/l	
56-23-5 75-34-3	Carbon tetrachloride ^a 1,1-Dichloroethane	ND ND	5.0	0.50 0.50 0.50	0.07 0.24 0.22	ug/l ug/l ug/l	
75-35-4 563-58-6	1,1-Dichloroethylene 1,1-Dichloropropene	4.4 ND	7.0	0.50 0.50	0.19 0.14	ug/l ug/l	
96-12-8 106-93-4	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND	0.20 0.050	1.0 0.50	0.14 0.15	ug/l ug/l	
107-06-2 78-87-5	1,2-Dichloroethane 1,2-Dichloropropane	ND ND	5.0 5.0	0.50 0.50	0.18 0.19	ug/l ug/l	
142-28-9 594-20-7 124-48-1	1, 3-Dichloropropane 2,2-Dichloropropane Dibromochloromethane	ND ND ND		0.50 0.50 0.50	0.17 0.31 0.14	ug/1 ug/l ug/l	
74-95-3 75-71-8 541-73-1	Dibromoethane Dichlorodifluoromethane m-Dichlorobenzene	ND ND ND		0.50 0.50 0.50 0.50	0.23 0.40 0.14	ug/l ug/l ug/l	

ND = Not detected**MDL** = **Method Detection Limit** MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

ω

3.2

Client Samj Lab Sample Matrix: Method: Project:	ole ID: RW-12270CM-0801 e ID: JC92613-2 DW - Drinking Wate EPA 524.2 REV 4.1 Kop-Flex, Hanover,	19 er VA			Da Da Per	te Sampled: te Received: •cent Solids:	08/01/19 08/02/19 n/a
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.14	ug/l	
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.10	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.21	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.14	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.18	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.50	0.16	ug/l	
100-41-4	Ethylbenzene	ND	700	0.50	0.076	ug/l	
87-68-3	Hexachlorobutadiene	ND		0.50	0.13	ug/l	
591-78-6	2-Hexanone	ND		2.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND		0.50	0.054	ug/l	
99-87-6	p-Isopropyltoluene	ND		0.50	0.43	ug/l	
75-09-2	Methylene chloride	ND	5.0	0.50	0.37	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.11	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.22	ug/l	
91-20-3	Naphthalene	ND		0.50	0.28	ug/l	
103-65-1	n-Propylbenzene	ND		0.50	0.066	ug/l	
100-42-5	Styrene	ND	100	0.50	0.069	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	ug/l	
71-55-6	1,1,1-1richloroethane	ND	200	0.50	0.22	ug/l	
79-34-5	1,1,2,2-1etrachloroethane	ND		0.50	0.13	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.19	ug/l	
87-61-6	1,2,3-1richlorobenzene	ND		0.50	0.091	ug/l	
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.13	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	70	0.50	0.055	ug/l	
95-63-6	1,2,4-1 rimethylbenzene	ND		0.50	0.40	ug/l	
108-67-8	1,3,5-1rimethylbenzene	ND	F 0	0.50	0.057	ug/l	
127-18-4	1 etrachioroethylene	ND	5.0	0.50	0.23	ug/I	
108-88-3	1 oluene	ND	1000	0.50	0.11	ug/1	
79-01-0 75-00-4	Trichlorofly aromathana		5.0	0.30	0.20	ug/l	
75-09-4	Vinyl oblagida	ND	9.0	1.0	0.19	ug/1	
75-01-4	vinyi chioride		2.0	0.50	0.15	ug/1	
05 47 6	m,p-Aylene	ND		0.50		ug/1	
90-47-0	0-Aylene Vylanas (total)	ND	10000	0.50	0.076	ug/l	
1990-20-7	Aytelles (lotal)	ND	10000	0.50	0.070	ug/1	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits		
2199-69-1	1,2-Dichlorobenzene-d4	100%			70-130 %		
460-00-4	4-Bromofluorobenzene	88%			70-130 %		

Report of Analysis

ND = Not detected**MDL** = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

ω

11 of 40 SGS
SGS North America Inc.

Client Sample II Lab Sample ID: Matrix: Method: Project:	D: RW-12270Cl JC92613-2 DW - Drinki EPA 524.2 R Kop-Flex, Ha	M-080119 ng Water EV 4.1 anover, VA		Date Sampled: Date Received: Percent Solids:	08/01/19 08/02/19 n/a
VOA List					
CAS No. Cor	npound	Result	MCL RL	MDL Units Q	

Report of Analysis

(a) Associated CCV outside of control limits high, sample was ND. This compound in BS is outside in house QC criteria bias high.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

3

3.2

			Report	of A	nalysi	S		Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW-15 e ID: JC926 DW - SW84 Kop-F	2270CM-0 13-2 Drinking V 6 8260C B lex, Hanov	80119 Vater Y SIM ⁄er, VA			Da Da Pe	te Sampled: te Received: rcent Solids:	08/01/19 08/02/19 n/a
Run #1 Run #2	File ID 3A162821.D	DF 1	Analyzed 08/08/19 13:23	By RS	Prep n/a	Date	Prep Batch n/a	n Analytical Batch V3A7051
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	MCL	RL	MDL	Units Q	
123-91-1	1,4-Dioxane		1.7		0.40	0.095	ug/l	
CAS No.	Surrogate Re	coveries	Run# 1	Run#	2 L	imits		
17647-74-4	1,4-Dioxane-o	18	95%		2	5-195%		

3.2

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS North America Inc.

Report of Analysis

Client San Lab Samp Matrix:	nple ID: TB-080119 le ID: JC92613-3 DW - Drinking Wate	r TB			Da Da	te Samp te Recei	led: 0 ved: 0	8/01/19 8/02/19
Method: Project:			Pe	rcent So	lids: n	//a		
Run #1 Run #2	File ID DF 1B120444.D 1	Analyzed 08/06/19 11:32	By BK	Preg n/a	o Date	Prep n/a	Batch	Analytical Batch V1B5821
Run #1 Run #2	Purge Volume 5.0 ml							
VOA List								
CAS No.	Compound	Result	MCL	RL	MDL	Units	Q	
67-64-1	Acetone	4.1		5.0	2.5	ug/l	J	
78-93-3	2-Butanone	ND		5.0	0.43	ug/l		
71-43-2	Benzene	ND	5.0	0.50	0.16	ug/l		
108-86-1	Bromobenzene	ND		0.50	0.12	ug/l		
74-97-5	Bromochloromethane	ND		0.50	0.17	ug/l		
75-27-4	Bromodichloromethane	ND		0.50	0.13	ug/l		
75-25-2	Bromoform ^a	ND		0.50	0.27	ug/l		
74-83-9	Bromomethane	ND		0.50	0.18	ug/l		
104-51-8	n-Butylbenzene	ND		0.50	0.068	ug/l		
135-98-8	sec-Butylbenzene	ND		0.50	0.43	ug/l		
98-06-6	tert-Butylbenzene	ND		0.50	0.057	ug/l		
75-15-0	Carbon disulfide	ND	100	0.50	0.18	ug/l		
108-90-7	Chlorobenzene	ND	100	0.50	0.093	ug/l		
75-00-3	Chloroethane	ND		0.50	0.080	ug/l		
67-66-3	Chloroform	ND		0.50	0.17	ug/l		
74-87-3	Chloromethane	ND		0.50	0.13	ug/l		
95-49-8	o-Chlorotoluene	ND		0.50	0.098	ug/l		
106-43-4	p-Chlorotoluene	ND	5.0	0.50	0.075	ug/l		
56-23-5	Carbon tetrachloride "	ND	5.0	0.50	0.24	ug/l		
75-34-3	1, 1-Dichlerestle less	ND	7.0	0.50	0.22	ug/I		
75-35-4	1,1-Dichloroethylene	ND	7.0	0.50	0.19	ug/l		
505-58-0	1, 1-Dicnioropropene	ND	0.00	0.50	0.14	ug/I		
90-12-8	1,2-Dibromo-3-chioropropan		0.20	1.0	0.14	ug/1		
100-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.15	ug/I		
107-00-2	1,2-Dichleroretnane	ND	5.0	0.50	0.18	ug/1		
/0-0/-0 1/9 90 0	1,2-Dichloropropane		5.0	0.30 0 E0	0.19	ug/1		
142-20-9 501 90 7	1, 5-Dichloropropane	ND		0.30 0 E0	U.17 0.91	ug/1		
JJ4-20-/ 19/ /0 1	2,2-Dicilioropropalle Dibromochloromathana	ND		0.30 0 E0	0.31	ug/1		
124-40-1 71 05 9	Dibromomothere	ND		0.30 0 E0	U.14 0.99	ug/1		
75 71 0	Diplorediflueremethere	ND		0.30 0 E0	0.23	ug/1		
1 J-1 1-0 5 11 79 1	m Dichlorohongene	ND		0.JU 0 20	0.40	ug/1		
741-19-1	III - DICHIOI ODCHZCHC			0.00	0.14	ug/1		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

ω

ယ ပ

Client Samp Lab Sample Matrix: Method: Project:	le ID: TB-080119 ID: JC92613-3 DW - Drinking Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	TB /A			Date Date Pero	e Sampled: e Received: cent Solids:	08/01/19 08/02/19 n/a
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.14	ug/l	
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.10	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.21	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.14	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.18	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.50	0.16	ug/l	
100-41-4	Ethylbenzene	ND	700	0.50	0.076	ug/l	
87-68-3	Hexachlorobutadiene	ND		0.50	0.13	ug/l	
591-78-6	2-Hexanone	ND		2.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND		0.50	0.054	ug/l	
99-87-6	p-Isopropyltoluene	ND		0.50	0.43	ug/l	
75-09-2	Methylene chloride	ND	5.0	0.50	0.37	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.11	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.22	ug/l	
91-20-3	Naphthalene	ND		0.50	0.28	ug/l	
103-65-1	n-Propylbenzene	ND		0.50	0.066	ug/l	
100-42-5	Styrene	ND	100	0.50	0.069	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.13	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.19	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND		0.50	0.091	ug/l	
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.13	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	70	0.50	0.055	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND		0.50	0.40	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND		0.50	0.057	ug/l	
127-18-4	Tetrachloroethylene	ND	5.0	0.50	0.23	ug/l	
108-88-3	Toluene	ND	1000	0.50	0.11	ug/l	
79-01-6	Trichloroethylene	ND	5.0	0.50	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND		1.0	0.19	ug/l	
75-01-4	Vinyl chloride	ND	2.0	0.50	0.15	ug/l	
	m,p-Xylene	ND		0.50	0.14	ug/l	
95-47-6	o-Xylene	ND		0.50	0.076	ug/l	
1330-20-7	Xylenes (total)	ND	10000	0.50	0.076	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits		
2199-69-1	1,2-Dichlorobenzene-d4	98 %			70-130%		
460-00-4	4-Bromotluorobenzene	90%			70-130%		

ND = Not detectedMDL = Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ ပ

ω

SGS^{15 of 40}

SGS North America Inc.

		- T	J		8
Client Sample ID:	TB-080119				
Lab Sample ID:	JC92613-3			Date Sampled:	08/01/19
Matrix:	DW - Drinking Water TB	3		Date Received:	08/02/19
Method:	EPA 524.2 REV 4.1			Percent Solids:	n/a
Project:	Kop-Flex, Hanover, VA				
Project:	Kop-Flex, Hanover, VA			Percent Sonds:	II/ a
VOA List					
CAS No. Comp	oound F	Result MC	CL RL N	IDL Units O	

Report of Analysis

(a) Associated CCV outside of control limits high, sample was ND. This compound in BS is outside in house QC criteria bias high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 3 of 3

3.3 3 SGS North America Inc.

			Report	of A	nalysi	is		Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: TB-08 e ID: JC926 DW - SW84 Kop-F	0119 13-3 Drinking V 3 8260C B lex, Hanov	Vater TB Y SIM ⁄er, VA			Da Da Pei	te Sampled: te Received: rcent Solids:	08/01/19 08/02/19 n/a
Run #1 Run #2	File ID 3A162822.D	DF 1	Analyzed 08/08/19 13:52	By RS	Prep n/a) Date	Prep Batch n/a	Analytical Batch V3A7051
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	MCL	RL	MDL	Units Q	
123-91-1	1,4-Dioxane		ND		0.40	0.095	ug/l	
CAS No.	Surrogate Re	coveries	Run# 1	Run#	2 L	imits		
17647-74-4	1,4-Dioxane-o	18	86%		2	5-195%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

ယ ယ

ω

17 of 40 SGS

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

$\begin{array}{c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$
tory Project Manager PUCUS PHTers Standard $24 HR48 HR 72 HR-HRCommentsert temps: 1.6med(IP-IR-7)IR$
$\begin{array}{c c} \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $
ted Turn-Around Time Standard 24 HR 48 HR 72 HR - HR Comments W TEMPS: 1.6 Md(ID: IR-7) IC
48HR 72HR HR Comments let temps: [.6" med(IP: IR-7) IC IC
Comments ler temp: 1.6°C md(ID: IR-7 IP
Comments ler temps: 1.6° med(ID:IR-7) IA
ier - loop: (.6 mal ID: IR-7 IA
/////////////////////////////////////
14 PT 1
and the second
Bottle #: 541-11-20
<u> </u>
LABEL VERIFICATION

JC92613: Chain of Custody Page 1 of 2

SGS

SGS Sample Receipt Summary

Job Number: JC	92613	Client:				Project:			
Date / Time Received: 8/2	/2019 9:30:00	AM	Delivery M	lethod:		Airbill #'s:			
Cooler Temps (Raw Measu Cooler Temps (Correc	red) °C: Cool ted) °C: Cool	er 1: (1.6); er 1: (1.5);							
Cooler Security	YorN	3 COC Pr	acant:	<u>Y</u> or	N	Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present: 2. Custody Seals Intact:		. Smpl Dates	s/Time OK	\checkmark		 Sample labels present on bottles: Container labeling complete: 			
Cooler Temperature	Y or M	<u>L</u>				3. Sample container label / COC agree:	✓		
 Temp criteria achieved: Cooler temp verification: Cooler media: 	IR Gu] ו g)				Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	<u> </u>	<u>or N</u>	
4. No. Coolers:	1					3. Condition of sample:	•	Intact	
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved property	n <u>Yor</u> V [V [Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests	<u>Υ</u> □	or N □ ☑	<u>N/A</u>
4. VOCs headspace free:						 Sufficient volume recvo for analysis: Compositing instructions clear: Filtering instructions clear: 			V
Test Strip Lot #s: p	oH 1-12:	229517		pH 12	2+:	208717 Other: (Specify)			
Comments									

SM089-03 Rev. Date 12/7/17

JC92613: Chain of Custody Page 2 of 2

4.1

4

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Surrogate Recovery Summaries

Method Blank Summary

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1B5821-MB	1B120443.D	1	08/06/19	BK	n/a	n/a	V1B5821
The QC reported here applies to the following samples:						Method: EPA 5	24.2 REV 4.1

JC92613-1, JC92613-2, JC92613-3

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	2.5	ug/l
78-93-3	2-Butanone	ND	5.0	0.43	ug/l
71-43-2	Benzene	ND	0.50	0.16	ug/l
108-86-1	Bromobenzene	ND	0.50	0.12	ug/l
74-97-5	Bromochloromethane	ND	0.50	0.17	ug/l
75-27-4	Bromodichloromethane	ND	0.50	0.13	ug/l
75-25-2	Bromoform	ND	0.50	0.27	ug/l
74-83-9	Bromomethane	ND	0.50	0.18	ug/l
104-51-8	n-Butylbenzene	ND	0.50	0.068	ug/l
135-98-8	sec-Butylbenzene	ND	0.50	0.43	ug/l
98-06-6	tert-Butylbenzene	ND	0.50	0.057	ug/l
75-15-0	Carbon disulfide	ND	0.50	0.18	ug/l
108-90-7	Chlorobenzene	ND	0.50	0.093	ug/l
75-00-3	Chloroethane	ND	0.50	0.080	ug/l
67-66-3	Chloroform	ND	0.50	0.17	ug/l
74-87-3	Chloromethane	ND	0.50	0.13	ug/l
95-49-8	o-Chlorotoluene	ND	0.50	0.098	ug/l
106-43-4	p-Chlorotoluene	ND	0.50	0.075	ug/l
56-23-5	Carbon tetrachloride	ND	0.50	0.24	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	0.22	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	0.19	ug/l
563-58-6	1,1-Dichloropropene	ND	0.50	0.14	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.0	0.14	ug/l
106-93-4	1,2-Dibromoethane	ND	0.50	0.15	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	0.18	ug/l
78-87-5	1,2-Dichloropropane	ND	0.50	0.19	ug/l
142-28-9	1,3-Dichloropropane	ND	0.50	0.17	ug/l
594-20-7	2,2-Dichloropropane	ND	0.50	0.31	ug/l
124-48-1	Dibromochloromethane	ND	0.50	0.14	ug/l
74-95-3	Dibromomethane	ND	0.50	0.23	ug/l
75-71-8	Dichlorodifluoromethane	ND	0.50	0.40	ug/l
541-73-1	m-Dichlorobenzene	ND	0.50	0.14	ug/l
95-50-1	o-Dichlorobenzene	ND	0.50	0.14	ug/l
106-46-7	p-Dichlorobenzene	ND	0.50	0.10	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	0.21	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	0.14	ug/l

Page 1 of 2

Method Blank Summary

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1B5821-MB	1B120443.D	1	08/06/19	BK	n/a	n/a	V1B5821
The QC reporte	d here applies to	the foll	owing samples:			Method: EPA 5	24.2 REV 4.1

JC92613-1, JC92613-2, JC92613-3

CAS No.	Compound	Result	RL	MDL	Units	Q
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.16	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.18	ug/l	
100-41-4	Ethylbenzene	ND	0.50	0.076	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.50	0.13	ug/l	
591-78-6	2-Hexanone	ND	2.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	0.50	0.054	ug/l	
99-87-6	p-Isopropyltoluene	ND	0.50	0.43	ug/l	
75-09-2	Methylene chloride	ND	0.50	0.37	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	0.11	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	2.0	0.22	ug/l	
91-20-3	Naphthalene	ND	0.50	0.28	ug/l	
103-65-1	n-Propylbenzene	ND	0.50	0.066	ug/l	
100-42-5	Styrene	ND	0.50	0.069	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.13	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	0.50	0.19	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	0.50	0.091	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	0.50	0.13	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	0.055	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	0.40	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	0.057	ug/l	
127-18-4	Tetrachloroethylene	ND	0.50	0.23	ug/l	
108-88-3	Toluene	ND	0.50	0.11	ug/l	
79-01-6	Trichloroethylene	ND	0.50	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.19	ug/l	
75-01-4	Vinyl chloride	ND	0.50	0.15	ug/l	
	m,p-Xylene	ND	0.50	0.14	ug/l	
95-47-6	o-Xylene	ND	0.50	0.076	ug/l	
1330-20-7	Xylenes (total)	ND	0.50	0.076	ug/l	
CAS No.	Surrogate Recoveries		Limits			
2199-69-1	1.2-Dichlorobenzene-d4	98%	70-130%	6		
460-00-4	4-Bromofluorobenzene	90%	70-1309	6		

5.1.1 **5**

Method Blank Summary

Account: Project:	r: JC92013 ESCVAR WSP E Kop-Flex, Hanov	invironn er, VA	nent & Energ	gy				
Sample V3A7051-M	File ID IB 3A162816.D	DF 1	Analyz 08/08/	zed By 19 RS	Pre n/a	ep Date	Prep Batch n/a	Analytical Batch V3A7051
The QC rep JC92613-1,	ported here applies to JC92613-2, JC92613-3	the foll 3	owing samp	oles:			Method: SW84	6 8260C BY SIM
CAS No.	Compound		Result	RL	MDL	Units	Q	
123-91-1	1,4-Dioxane		ND	0.40	0.095	ug/l		
CAS No.	Surrogate Recoveries	s		Limits				
17647-74-4	1,4-Dioxane-d8		79 %	25-195	%			

24 of 40

Account:	ESCVAR WSP Environment & Energy									
Project:	Kop-Flex, Hanover, VA									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
V1B5821-BS	1B120442.D	1	08/06/19	BK	n/a	n/a	V1B5821			
The QC repor	ted here applies to	the follo	wing samples:		· · · · · · · · · · · · · · · · · · ·	Method: EPA 5	24.2 REV 4.1			

JC92613-1, JC92613-2, JC92613-3

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
					-
67-64-1	Acetone	20	16.5	83	70-130
78-93-3	2-Butanone	20	16.8	84	70-130
71-43-2	Benzene	5	5.1	102	70-130
108-86-1	Bromobenzene	5	5.1	102	70-130
74-97-5	Bromochloromethane	5	5.4	108	70-130
75-27-4	Bromodichloromethane	5	5.4	108	70-130
75-25-2	Bromoform	5	6.6	132* a	70-130
74-83-9	Bromomethane	5	5.9	118	70-130
104-51-8	n-Butylbenzene	5	4.6	92	70-130
135-98-8	sec-Butylbenzene	5	4.8	96	70-130
98-06-6	tert-Butylbenzene	5	4.6	92	70-130
75-15-0	Carbon disulfide	5	5.4	108	70-130
108-90-7	Chlorobenzene	5	5.0	100	70-130
75-00-3	Chloroethane	5	5.4	108	70-130
67-66-3	Chloroform	5	5.0	100	70-130
74-87-3	Chloromethane	5	5.4	108	70-130
95-49-8	o-Chlorotoluene	5	4.9	98	70-130
106-43-4	p-Chlorotoluene	5	4.7	94	70-130
56-23-5	Carbon tetrachloride	5	6.9	138* a	70-130
75-34-3	1,1-Dichloroethane	5	5.0	100	70-130
75-35-4	1,1-Dichloroethylene	5	4.9	98	70-130
563-58-6	1,1-Dichloropropene	5	5.1	102	70-130
96-12-8	1,2-Dibromo-3-chloropropane	5	4.5	90	70-130
106-93-4	1,2-Dibromoethane	5	4.8	96	70-130
107-06-2	1,2-Dichloroethane	5	5.0	100	70-130
78-87-5	1,2-Dichloropropane	5	5.0	100	70-130
142-28-9	1.3-Dichloropropane	5	4.9	98	70-130
594-20-7	2.2-Dichloropropane	5	6.0	120	70-130
124-48-1	Dibromochloromethane	5	5.7	114	70-130
74-95-3	Dibromomethane	5	5.1	102	70-130
75-71-8	Dichlorodifluoromethane	5	6.5	130	70-130
541-73-1	m-Dichlorobenzene	5	5.0	100	70-130
95-50-1	o-Dichlorobenzene	5	4.9	98	70-130
106-46-7	p-Dichlorobenzene	5	4.8	96	70-130
156-60-5	trans-1, 2-Dichloroethylene	5	5.0	100	70-130
156-59-2	cis-1 2-Dichloroethylene	5	49	98	70-130
100 00 %	eis i, » Diemorocuryiche	0	1.0	00	10 100

* = Outside of Control Limits.

5.2.1

G

SGS

Method: EPA 524.2 REV 4.1

Job Number: Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm er, VA	ent & Energy				
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1B5821-BS	1B120442.D	1	08/06/19	BK	n/a	n/a	V1B5821

The QC reported here applies to the following samples:

JC92613-1, JC92613-2, JC92613-3

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
10061-01-5	cis-1,3-Dichloropropene	5	4.8	96	70-130
10061-02-6	trans-1,3-Dichloropropene	5	5.1	102	70-130
100-41-4	Ethylbenzene	5	4.8	96	70-130
87-68-3	Hexachlorobutadiene	5	5.3	106	70-130
591-78-6	2-Hexanone	20	16.8	84	70-130
98-82-8	Isopropylbenzene	5	4.6	92	70-130
99-87-6	p-Isopropyltoluene	5	4.6	92	70-130
75-09-2	Methylene chloride	5	5.3	106	70-130
1634-04-4	Methyl Tert Butyl Ether	5	4.6	92	70-130
108-10-1	4-Methyl-2-pentanone	20	17.4	87	70-130
91-20-3	Naphthalene	5	4.1	82	70-130
103-65-1	n-Propylbenzene	5	4.8	96	70-130
100-42-5	Styrene	5	4.5	90	70-130
630-20-6	1,1,1,2-Tetrachloroethane	5	5.6	112	70-130
71-55-6	1,1,1-Trichloroethane	5	5.5	110	70-130
79-34-5	1,1,2,2-Tetrachloroethane	5	4.8	96	70-130
79-00-5	1,1,2-Trichloroethane	5	4.9	98	70-130
87-61-6	1,2,3-Trichlorobenzene	5	4.5	90	70-130
96-18-4	1,2,3-Trichloropropane	5	4.9	98	70-130
120-82-1	1,2,4-Trichlorobenzene	5	4.5	90	70-130
95-63-6	1,2,4-Trimethylbenzene	5	4.7	94	70-130
108-67-8	1,3,5-Trimethylbenzene	5	4.8	96	70-130
127-18-4	Tetrachloroethylene	5	4.8	96	70-130
108-88-3	Toluene	5	4.7	94	70-130
79-01-6	Trichloroethylene	5	4.8	96	70-130
75-69-4	Trichlorofluoromethane	5	6.2	124	70-130
75-01-4	Vinyl chloride	5	6.0	120	70-130
	m,p-Xylene	10	9.6	96	70-130
95-47-6	o-Xylene	5	4.7	94	70-130
1330-20-7	Xylenes (total)	15	14.3	95	70-130
CAS No.	Surrogate Recoveries	BSP	L	imits	
2199-69-1	1,2-Dichlorobenzene-d4	103%	70)-130 %	
460-00-4	4-Bromofluorobenzene	97 %	70)-130%	

* = Outside of Control Limits.

Method: EPA 524.2 REV 4.1

5.2.1 G

Job Number: Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm /er, VA	ent & Energy				
Sample V1B5821-BS	File ID 1B120442.D	DF 1	Analyzed 08/06/19	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V1B5821
The QC repor	ted here applies to	the follo	wing samples:			Method: EPA 5	524.2 REV 4.1

JC92613-1, JC92613-2, JC92613-3

(a) High percent recoveries and no associated positive reported in the QC batch.

Job Numbe Account: Project:	r: JC92613 ESCVAR WSP E Kop-Flex, Hanov	invironi er, VA	nent & En	ergy				
Sample V3A7051-B	File ID S 3A162815.D	DF 1	Ana 08/0	lyzed)8/19	By RS	Prep Date n/a	Prep Batch n/a	Analytical Batch V3A7051
The QC rej JC92613-1,	ported here applies to JC92613-2, JC92613-	the fol 3	lowing sai	mples:			Method: SW84	6 8260C BY SIM
CAS No. 123-91-1	Compound		Spike ug/l 20	BSP ug/l 16 1	BSP %	Limits		
CAS No.	Surrogate Recoverie	8	BSP	10.1 L	imits	40-137		
17647-74-4	1,4-Dioxane-d8		82%	2	5-195%			

Matrix Spike Summary Job Number: JC92613

Account: Project:	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
JC92636-1MS	1B120457.D	1	08/06/19	BK	n/a	n/a	V1B5821			
JC92636-1	1B120456.D	1	08/06/19	BK	n/a	n/a	V1B5821			

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC92613-1, JC92613-2, JC92613-3

		JC92636	5-1	Spike	MS	MS	
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	Limits
67-64-1	Acetone	ND		20	12.9	65	41-142
78-93-3	2-Butanone	ND		20	13.3	67	55-129
71-43-2	Benzene	ND		5	4.0	80	53-138
108-86-1	Bromobenzene	ND		5	3.9	78	54-138
74-97-5	Bromochloromethane	ND		5	4.2	84	55-140
75-27-4	Bromodichloromethane	ND		5	4.1	82	57-147
75-25-2	Bromoform	ND		5	5.2	104	47-137
74-83-9	Bromomethane	ND		5	6.0	120	40-162
104-51-8	n-Butylbenzene	ND		5	3.2	64	45-144
135-98-8	sec-Butylbenzene	ND		5	3.5	70	46-145
98-06-6	tert-Butylbenzene	ND		5	3.3	66	48-141
75-15-0	Carbon disulfide	ND		5	4.3	86	35-127
108-90-7	Chlorobenzene	ND		5	3.7	74	54-135
75-00-3	Chloroethane	ND		5	5.7	114	38-153
67-66-3	Chloroform	ND		5	3.9	78	57-151
74-87-3	Chloromethane	ND		5	5.6	112	39-165
95-49-8	o-Chlorotoluene	ND		5	3.5	70	55-142
106-43-4	p-Chlorotoluene	ND		5	3.5	70	55-139
56-23-5	Carbon tetrachloride	ND		5	5.5	110	49-170
75-34-3	1.1-Dichloroethane	ND		5	4.0	80	55-149
75-35-4	1,1-Dichloroethylene	ND		5	3.8	76	42-142
563-58-6	1.1-Dichloropropene	ND		5	3.8	76	46-151
96-12-8	1.2-Dibromo-3-chloropropane	ND		5	4.3	86	48-141
106-93-4	1.2-Dibromoethane	ND		5	3.8	76	57-135
107-06-2	1.2-Dichloroethane	ND		5	3.9	78	59-166
78-87-5	1.2-Dichloropropane	ND		5	3.8	76	53-142
142-28-9	1.3-Dichloropropane	ND		5	3.8	76	58-143
594-20-7	2.2-Dichloropropane	ND		5	4.5	90	38-165
124-48-1	Dibromochloromethane	ND		5	4.4	88	55-138
74-95-3	Dibromomethane	ND		5	4.0	80	61-144
75-71-8	Dichlorodifluoromethane	ND		5	6.6	132	23-172
541-73-1	m-Dichlorobenzene	ND		5	3.9	78	53-138
95-50-1	o-Dichlorobenzene	ND		5	3.9	78	54-140
106-46-7	p-Dichlorobenzene	ND		5	3.7	74	53-137
156-60-5	trans-1.2-Dichloroethylene	ND		5	3.9	78	47-148
156-59-2	cis-1.2-Dichloroethylene	ND		5	3.9	78	51-146
200 00 W				~	5.0		31 110

* = Outside of Control Limits.

Matrix Spike Summary Job Number: JC92613

Account: Project:	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
JC92636-1MS	1B120457.D	1	08/06/19	BK	n/a	n/a	V1B5821			
JC92636-1	1B120456.D	1	08/06/19	BK	n/a	n/a	V1B5821			

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC92613-1, JC92613-2, JC92613-3

		JC92636-1		Spike MS		S MS		
CAS No.	Compound	ug/l	Q	ug/l	ug/	1	%	Limits
10061-01-5	cis-1,3-Dichloropropene	ND		5	3.5		70	51-136
10061-02-6	trans-1,3-Dichloropropene	ND		5	3.7	'	74	54-142
100-41-4	Ethylbenzene	ND		5	3.5		70	51-138
87-68-3	Hexachlorobutadiene	ND		5	4.1		82	40-154
591-78-6	2-Hexanone	ND		20	14.	2	71	53-128
98-82-8	Isopropylbenzene	ND		5	3.3		66	49-139
99-87-6	p-Isopropyltoluene	ND		5	3.3		66	45-141
75-09-2	Methylene chloride	ND		5	4.2		84	54-137
1634-04-4	Methyl Tert Butyl Ether	ND		5	3.4	:	68	53-143
108-10-1	4-Methyl-2-pentanone	ND		20	14.	1	71	58-127
91-20-3	Naphthalene	ND		5	3.2		64	44-140
103-65-1	n-Propylbenzene	ND		5	3.4		68	50-142
100-42-5	Styrene	ND		5	3.1		62	23-130
630-20-6	1,1,1,2-Tetrachloroethane	ND		5	4.4		88	57-144
71-55-6	1,1,1-Trichloroethane	ND		5	4.4		88	52-164
79-34-5	1,1,2,2-Tetrachloroethane	ND		5	4.2		84	58-138
79-00-5	1,1,2-Trichloroethane	ND		5	4.0)	80	59-139
87-61-6	1,2,3-Trichlorobenzene	ND		5	3.5		70	47-141
96-18-4	1,2,3-Trichloropropane	ND		5	4.3		86	56-148
120-82-1	1,2,4-Trichlorobenzene	ND		5	3.4		68	46-137
95-63-6	1,2,4-Trimethylbenzene	ND		5	3.4		68	41-138
108-67-8	1,3,5-Trimethylbenzene	ND		5	3.5		70	45-138
127-18-4	Tetrachloroethylene	ND		5	3.8		76	45-145
108-88-3	Toluene	ND		5	3.6		72	52-134
79-01-6	Trichloroethylene	ND		5	3.9)	78	54-143
75-69-4	Trichlorofluoromethane	ND		5	6.4		128	36-167
75-01-4	Vinyl chloride	ND		5	6.1		122	35-162
	m,p-Xylene	ND		10	6.9)	69	49-135
95-47-6	o-Xylene	ND		5	3.4		68	49-134
1330-20-7	Xylenes (total)	ND		15	10.	3	69	50-134
CAS No.	Surrogate Recoveries	MS		JC92636	5-1	Limi	ts	
	-							
2199-69-1	1,2-Dichlorobenzene-d4	103%		97 %		70-13	30%	
460-00-4	4-Bromofluorobenzene	94%		87 %		70-13	30%	

* = Outside of Control Limits.

Matrix Spike Summary Job Number: JC92613

17647-74-4 1,4-Dioxane-d8

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environn er, VA	nent & Ener	gy					
Sample JC92810-2M JC92810-2	File ID S 3A162823.D 3A162817.D	DF 1 1	Analy 08/08/ 08/08/	/2ed /19 /19	By RS RS	Pre n/a n/a	p Date	Prep Batch n/a n/a	Analytical Batch V3A7051 V3A7051
The QC rep JC92613-1, J	orted here applies to [C92613-2, JC92613-	the foll 3	owing sam	ples	:			Method: SW84	6 8260C BY SIM
CAS No.	Compound		JC92810- ug/l	-2 Q	Spike ug/l	MS ug/l	MS %	Limits	
123-91-1	1,4-Dioxane		ND		20	17.1	86	28-162	
CAS No.	Surrogate Recoverie	s	MS		JC9281	0-2 Liı	nits		

85%

25-195%

93%

* = Outside of Control Limits.

Page 1 of 1

Duplicate Summary Job Number: JC92613

Project:	Kop-Flex, Hanov	er, VA	ent & Energy				
Sample JC92613-2DUP JC92613-2	File ID 1B120450.D 1B120446.D	DF 1 1	Analyzed 08/06/19 08/06/19	By BK BK	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V1B5821 V1B5821

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC92613-1, JC92613-2, JC92613-3

		JC92613	8-2	DUP			
CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits
67-64-1	Acetone	ND		ND		nc	10
78-93-3	2-Butanone	ND		ND		nc	12
71-43-2	Benzene	ND		ND		nc	10
108-86-1	Bromobenzene	ND		ND		nc	10
74-97-5	Bromochloromethane	ND		ND		nc	10
75-27-4	Bromodichloromethane	ND		ND		nc	10
75-25-2	Bromoform	ND		ND		nc	10
74-83-9	Bromomethane	ND		ND		nc	10
104-51-8	n-Butylbenzene	ND		ND		nc	10
135-98-8	sec-Butylbenzene	ND		ND		nc	10
98-06-6	tert-Butylbenzene	ND		ND		nc	10
75-15-0	Carbon disulfide	ND		ND		nc	19
108-90-7	Chlorobenzene	ND		ND		nc	10
75-00-3	Chloroethane	ND		ND		nc	10
67-66-3	Chloroform	ND		ND		nc	12
74-87-3	Chloromethane	ND		ND		nc	10
95-49-8	o-Chlorotoluene	ND		ND		nc	10
106-43-4	p-Chlorotoluene	ND		ND		nc	10
56-23-5	Carbon tetrachloride	ND		ND		nc	10
75-34-3	1,1-Dichloroethane	ND		ND		nc	10
75-35-4	1,1-Dichloroethylene	4.4		4.1		7	10
563-58-6	1,1-Dichloropropene	ND		ND		nc	10
96-12-8	1,2-Dibromo-3-chloropropane	ND		ND		nc	10
106-93-4	1,2-Dibromoethane	ND		ND		nc	10
107-06-2	1,2-Dichloroethane	ND		ND		nc	10
78-87-5	1,2-Dichloropropane	ND		ND		nc	10
142-28-9	1,3-Dichloropropane	ND		ND		nc	10
594-20-7	2,2-Dichloropropane	ND		ND		nc	10
124-48-1	Dibromochloromethane	ND		ND		nc	10
74-95-3	Dibromomethane	ND		ND		nc	10
75-71-8	Dichlorodifluoromethane	ND		ND		nc	10
541-73-1	m-Dichlorobenzene	ND		ND		nc	10
95-50-1	o-Dichlorobenzene	ND		ND		nc	10
106-46-7	p-Dichlorobenzene	ND		ND		nc	10
156-60-5	trans-1,2-Dichloroethylene	ND		ND		nc	10
156-59-2	cis-1,2-Dichloroethylene	ND		ND		nc	10
	-						

* = Outside of Control Limits.

Duplicate Summary Job Number: JC92613

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm er, VA	ent & Energy				
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
JC92613-2DUP	1B120450.D	1	08/06/19	BK	n/a	n/a	V1B5821
JC92613-2	1B120446.D	1	08/06/19	BK	n/a	n/a	V1B5821

The QC reported here applies to the following samples:

JC92613-1, JC92613-2, JC92613-3

		JC92613	8-2	DUP			
CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits
10061-01-5	cis-1 3-Dichloropropaga	ND		ND		nc	10
10001-01-5	trans_1 3-Dichloronronana	ND		ND		nc	10
10001-02-0	Ethylhonzono	ND		ND		nc	10
87-68-3	Hexachlorobutadiene	ND		ND		nc	10
591-78-6	9-Hevanone	ND		ND		nc	10
98-82-8	Isonronylhenzene	ND		ND		nc	10
99-87-6	n-Isopropyliolizene	ND		ND		nc	10
75-09-2	Methylene chloride	ND		ND		nc	10
1634-04-4	Methyl Tert Butyl Ether	ND		ND		nc	10
108-10-1	4-Methyl-2-nentanone	ND		ND		nc	10
91-20-3	Nanhthalene	ND		ND		nc	10
103-65-1	n-Pronylbenzene	ND		ND		nc	10
100-42-5	Styrene	ND		ND		nc	10
630-20-6	1.1.1.2-Tetrachloroethane	ND		ND		nc	10
71-55-6	1.1.1-Trichloroethane	ND		ND		nc	10
79-34-5	1.1.2.2-Tetrachloroethane	ND		ND		nc	10
79-00-5	1.1.2-Trichloroethane	ND		ND		nc	10
87-61-6	1.2.3-Trichlorobenzene	ND		ND		nc	10
96-18-4	1,2,3-Trichloropropane	ND		ND		nc	10
120-82-1	1,2,4-Trichlorobenzene	ND		ND		nc	10
95-63-6	1,2,4-Trimethylbenzene	ND		ND		nc	10
108-67-8	1,3,5-Trimethylbenzene	ND		ND		nc	10
127-18-4	Tetrachloroethylene	ND		ND		nc	10
108-88-3	Toluene	ND		ND		nc	10
79-01-6	Trichloroethylene	ND		ND		nc	10
75-69-4	Trichlorofluoromethane	ND		ND		nc	10
75-01-4	Vinyl chloride	ND		ND		nc	10
	m,p-Xylene	ND		ND		nc	10
95-47-6	o-Xylene	ND		ND		nc	10
1330-20-7	Xylenes (total)	ND		ND		nc	10
CAS No.	Surrogate Recoveries	DUP		JC92613-	2	Limits	
2199-69-1	1,2-Dichlorobenzene-d4	101%		100%		70-1309	%
460-00-4	4-Bromofluorobenzene	90%		88%		70-1309	%

* = Outside of Control Limits.

Method: EPA 524.2 REV 4.1

5.4.1 **5**

Duplicate Summary Job Number: JC92613

17647-74-4 1,4-Dioxane-d8

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm er, VA	ent & Energy	y				
Sample	File ID	DF	Analyze	ed By		Prep Dat	e Prep Batch	Analytical Batch
JC92810-3D	UP 3A162824.D	1	08/08/19	9 RS		n/a	n/a	V3A7051
JC92810-3	3A162818.D	1	08/08/19	9 RS		n/a	n/a	V3A7051
The QC repo JC92613-1, J	orted here applies to C92613-2, JC92613-	the follo 3	owing sample	es:			Method: SW84	6 8260C BY SIM
CAS No.	Compound		JC92810-3 ug/l Q	DUP ug/l	Q	RPD	Limits	
123-91-1	1,4-Dioxane		10.4	11.6		11	48	
CAS No.	Surrogate Recoverie	s	DUP	JC92810	-3	Limits		

93%

25-195%

101%

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V1B5806-BFBLab File ID:1B120247.DInstrument ID:GCMS1B			Injection Date: 07/11/19 Injection Time: 14:06							
m/e	Ion A	bundance Criteria	Raw Abundanc	% Relativ ce Abundan	ve ce	Pass/Fail				
50	14.99	- 40.0% of mass 95	3424	20.0		Pass				
75	30.0 -	80.0% of mass 95	8612	50.4		Pass				
95	Base p	eak, 100% relative abundance	17100	100.0		Pass				
96	5.0 - 9	.0% of mass 95	1206	7.05		Pass				
173	Less t	nan 2.0% of mass 174	0	0.00	(0.00) ^a	Pass				
174	50.0 -	120.0% of mass 95	14298	83.6		Pass				
175	5.0 - 9	0.0% of mass 174	1017	5.95	(7.11) ^a	Pass				
176	95.0 -	101.0% of mass 174	13890	81.2	(97.1) a	Pass				
177	5.0 - 9	.0% of mass 176	989	5.78	(7.12) ^b	Pass				

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1B5806-IC5806	1B120248.D	07/11/19	14:38	00:32	Initial cal 0.2
V1B5806-IC5806	1B120249.D	07/11/19	15:09	01:03	Initial cal 0.5
V1B5806-IC5806	1B120250.D	07/11/19	15:40	01:34	Initial cal 1
V1B5806-IC5806	1B120251.D	07/11/19	16:11	02:05	Initial cal 2
V1B5806-IC5806	1B120252.D	07/11/19	16:43	02:37	Initial cal 5
V1B5806-ICC5806	1B120253.D	07/11/19	17:14	03:08	Initial cal 10
V1B5806-IC5806	1B120254.D	07/11/19	17:45	03:39	Initial cal 20
V1B5806-IC5806	1B120255.D	07/11/19	18:16	04:10	Initial cal 40
V1B5806-IC5806	1B120256.D	07/11/19	18:47	04:41	Initial cal 80
V1B5806-ICV5806	1B120259.D	07/11/19	20:20	06:14	Initial cal verification 10

G

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V1B5821-BFBLab File ID:1B120440.DInstrument ID:GCMS1B		Injection Date: 08/06/19 Injection Time: 08:58							
m/e	Ion A	bundance Criteria	Raw Abundance	% Relati Abundar	ive nce	Pass/Fail			
50	14.99	- 40.0% of mass 95	2964	19.4		Pass			
75	30.0 -	80.0% of mass 95	7774	50.8		Pass			
95	Base p	eak, 100% relative abundance	15295	100.0		Pass			
96	5.0 - 9	0.0% of mass 95	1105	7.22		Pass			
173	Less t	han 2.0% of mass 174	0	0.00	(0.00) a	Pass			
174	50.0 -	120.0% of mass 95	12681	82.9	. ,	Pass			
175	5.0 - 9	0.0% of mass 174	923	6.03	(7.28) ^a	Pass			
176	95.0 -	101.0% of mass 174	12306	80.5	(97.0) a	Pass			
177	5.0 - 9	0.0% of mass 176	842	5.51	(6.84) ^b	Pass			

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
V1B5821-CC5806	1B120441 D	08/06/19	09.56	00.58	Continuing cal 10
V1B5821-BS	1B120442.D	08/06/19	10:28	01:30	Blank Snike
V1B5821-MB	1B120443.D	08/06/19	10:59	02:01	Method Blank
JC92613-3	1B120444.D	08/06/19	11:32	02:34	TB-080119
JC92613-1	1B120445.D	08/06/19	12:03	03:05	RW-12270CM-080119-F
JC92613-2	1B120446.D	08/06/19	12:34	03:36	RW-12270CM-080119
ZZZZZZ	1B120447.D	08/06/19	13:06	04:08	(unrelated sample)
ZZZZZZ	1B120448.D	08/06/19	13:37	04:39	(unrelated sample)
JC92613-2DUP	1B120450.D	08/06/19	14:39	05:41	Duplicate
ZZZZZZ	1B120451.D	08/06/19	15:10	06:12	(unrelated sample)
ZZZZZZ	1B120452.D	08/06/19	15:41	06:43	(unrelated sample)
ZZZZZZ	1B120453.D	08/06/19	16:12	07:14	(unrelated sample)
ZZZZZZ	1B120454.D	08/06/19	16:44	07:46	(unrelated sample)
ZZZZZZ	1B120455.D	08/06/19	17:15	08:17	(unrelated sample)
JC92636-1	1B120456.D	08/06/19	17:46	08:48	(used for QC only; not part of job JC92613)
JC92636-1MS	1B120457.D	08/06/19	18:17	09:19	Matrix Spike
ZZZZZZ	1B120458.D	08/06/19	18:48	09:50	(unrelated sample)
ZZZZZZ	1B120459.D	08/06/19	19:20	10:22	(unrelated sample)

G

SGS

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V3A6923-BFBLab File ID:3A160428.DInstrument ID:GCMS3A		Injection Date: 07/18/18 Injection Time: 16:55				
m/e	Ion A	bundance Criteria	Raw Abundance	% Relative Abundanc	e e	Pass/Fail
50	15.0 -	40.0% of mass 95	25408	20.8		Pass
75	30.0 -	60.0% of mass 95	62880	51.6		Pass
95	Base p	eak, 100% relative abundance	121864	100.0		Pass
96	5.0 - 9	0.0% of mass 95	8101	6.65		Pass
173	Less t	han 2.0% of mass 174	826	0.68	(0.81) ^a	Pass
174	50.0 -	120.0% of mass 95	102317	84.0		Pass
175	5.0 - 9	0.0% of mass 174	8168	6.70	(7.98) ^a	Pass
176	95.0 -	101.0% of mass 174	100370	82.4	(98.1) ^a	Pass
177	5.0 - 9	0.0% of mass 176	6691	5.49	(6.67) ^b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V3A6923-IC6923	3A160429.D	07/18/18	17:26	00:31	Initial cal 0.25
V3A6923-IC6923	3A160430.D	07/18/18	17:52	00:57	Initial cal 0.4
V3A6923-IC6923	3A160431.D	07/18/18	18:18	01:23	Initial cal 1
V3A6923-IC6923	3A160432.D	07/18/18	18:43	01:48	Initial cal 2
V3A6923-IC6923	3A160433.D	07/18/18	19:09	02:14	Initial cal 5
V3A6923-ICC6923	3A160434.D	07/18/18	19:35	02:40	Initial cal 20
V3A6923-IC6923	3A160435.D	07/18/18	20:00	03:05	Initial cal 50
V3A6923-IC6923	3A160436.D	07/18/18	20:26	03:31	Initial cal 100
V3A6923-IC6923	3A160437.D	07/18/18	20:52	03:57	Initial cal 200
V3A6923-ICV6923	3A160443.D	07/18/18	23:25	06:30	Initial cal verification 20

S

SGS

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V3A7051-BFBLab File ID:3A162812.DInstrument ID:GCMS3A		Injection Date: 08/08/19 Injection Time: 08:29			
m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail	
50	15.0 - 40.0% of mass 95	22544	19.9	Pass	
75	30.0 - 60.0% of mass 95	56321	49.8	Pass	
95	Base peak, 100% relative abundance	113093	100.0	Pass	
96	5.0 - 9.0% of mass 95	7593	6.71	Pass	
173	Less than 2.0% of mass 174	0	0.00 (0.00) ^a	Pass	
174	50.0 - 120.0% of mass 95	77330	68.4	Pass	
175	5.0 - 9.0% of mass 174	6172	5.46 (7.98) ^a	Pass	
176	95.0 - 101.0% of mass 174	74546	65.9 (96.4) ^a	Pass	
177	5.0 - 9.0% of mass 176	5219	4.61 (7.00) ^b	Pass	

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
V3A7051-CC6923	3A162814 D	08/08/19	09·37	01.08	Continuing cal 5
V3A7051-BS	3A162815.D	08/08/19	10:06	01:37	Blank Snike
V3A7051-MB	3A162816.D	08/08/19	10:54	02:25	Method Blank
JC92810-2	3A162817.D	08/08/19	11:27	02:58	(used for QC only: not part of job JC92613)
JC92810-3	3A162818.D	08/08/19	11:56	03:27	(used for QC only: not part of job JC92613)
ZZZZZZ	3A162819.D	08/08/19	12:25	03:56	(unrelated sample)
JC92613-1	3A162820.D	08/08/19	12:54	04:25	RW-12270CM-080119-F
JC92613-2	3A162821.D	08/08/19	13:23	04:54	RW-12270CM-080119
JC92613-3	3A162822.D	08/08/19	13:52	05:23	TB-080119
JC92810-2MS	3A162823.D	08/08/19	14:21	05:52	Matrix Spike
JC92810-3DUP	3A162824.D	08/08/19	14:50	06:21	Duplicate
ZZZZZZ	3A162825.D	08/08/19	15:19	06:50	(unrelated sample)
ZZZZZZ	3A162826.D	08/08/19	15:48	07:19	(unrelated sample)
ZZZZZZ	3A162827.D	08/08/19	16:17	07:48	(unrelated sample)
ZZZZZZ	3A162828.D	08/08/19	16:46	08:17	(unrelated sample)
7.7.7.7.7.	3A162829.D	08/08/19	17:14	08:45	(unrelated sample)
7.7.7.7.7.	3A162830.D	08/08/19	17:43	09:14	(unrelated sample)
777777	3A162831 D	08/08/19	18:12	09:43	(unrelated sample)
7.7.7.7.7.	3A162832 D	08/08/19	18:41	10:12	(unrelated sample)
ZZZZZZ	3A162833.D	08/08/19	19:10	10:41	(unrelated sample)

G

Surrogate Recovery Summary

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Method: EPA 524.2 REV 4.1

Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab		
Sample ID	File ID	S1	S2
JC92613-1	1B120445.D	98	89
JC92613-2	1B120446.D	100	88
JC92613-3	1B120444.D	98	90
JC92613-2DUP	1B120450.D	101	90
JC92636-1MS	1B120457.D	103	94
V1B5821-BS	1B120442.D	103	97
V1B5821-MB	1B120443.D	98	90
Surrogate		Recove	erv
Compounds	Limits	2	
S1 = 1, 2-Dichlor	robenzene-d4	70-130	%
S2 = 4-Bromoflu	iorobenzene	70-130	%

Page 1 of 1

Surrogate Recovery Summary

Job Number:	JC92613
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Method: SW846 8260C BY SIM

Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1
1009019 1	9 4 1 6 9 0 9 0 5	0.9
JC92013-1	3A102820.D	98
JC92613-2	3A162821.D	95
JC92613-3	3A162822.D	86
JC92810-2MS	3A162823.D	93
JC92810-3DUP	3A162824.D	101
V3A7051-BS	3A162815.D	82
V3A7051-MB	3A162816.D	79
Surrogate		Recovery
Compounds		Limits
S1 = 1.4-Dioxan	e-d8	25-195%
~, I DIOAU		20070

5.6.2 5

SEPTEMBER 2019

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

09/18/19

Technical Report for

WSP Environment & Energy

Kop-Flex, Hanover, VA

31401545.011-02

SGS Job Number: JC94420

Sampling Date: 09/04/19

Report to:

WSP 11190 Sunrise Valley Drive Suite 300 Reston, VA 20190 eric.johnson@wspgroup.com; maria.kaplan@wsp.com; Chris.Cresci@wspgroup.com ATTN: Eric Johnson

Total number of pages in report: 41

Henry

Mike Earp General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Tammy McCloskey 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 41 JC94420

Table of Contents

1 2 3 4 5

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC94420-1: RW-12270CM-090419-F	6
3.2: JC94420-2: RW-12270CM-090419	10
3.3: JC94420-3: TB-090419	14
Section 4: Misc. Forms	18
4.1: Chain of Custody	19
Section 5: MS Volatiles - QC Data Summaries	21
5.1: Method Blank Summary	22
5.2: Blank Spike Summary	26
5.3: Matrix Spike Summary	30
5.4: Matrix Spike/Matrix Spike Duplicate Summary	32
5.5: Duplicate Summary	33
5.6: Instrument Performance Checks (BFB)	36
5.7: Surrogate Recovery Summaries	40

Sample Summary

Job No:

JC94420

WSP Environment & Energy

Kop-Flex, Hanover, VA Project No: 31401545.011-02

Sample Number	Collected Date	Time By	Matrix Received Code Type			Client Sample ID		
This report contains results reported as ND = Not detected. The following applies:Organics ND= Not detected above the MDL								
JC94420-1	09/04/19	10:55 CC	09/05/19	DW	Drinking Water	RW-12270CM-090419-F		
JC94420-2	09/04/19	11:00 CC	09/05/19	DW	Drinking Water	RW-12270CM-090419-		
JC94420-3	09/04/19	11:00 CC	09/05/19	DW	Drinking Water TB	TB-090419		

Summary of Hits

Ē

Job Number:	JC94420
Account:	WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA
Collected:	09/04/19

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method			
JC94420-1	RW-12270CM-090419-F								
1,1,1-Trichloroe	thane	0.27 J	0.50	0.22	ug/l	EPA 524.2 REV 4.1			
1,4-Dioxane		2.0	0.40	0.095	ug/l	SW846 8260C BY SIM			
JC94420-2	RW-12270CM-090)419-							
1,1-Dichloroethy	lene	4.8	0.50	0.19	ug/l	EPA 524.2 REV 4.1			
1,1,1-Trichloroethane		0.25 J	0.50	0.22	ug/l	EPA 524.2 REV 4.1			
1,4-Dioxane		2.0	0.40	0.095	ug/l	SW846 8260C BY SIM			
JC94420-3	TB-090419								

No hits reported in this sample.

Ν

Dayton, NJ

Section 3 😡

Sample Results

Report of Analysis

SGS North America Inc.

	Report of Analysis						Page 1 of 3		
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: R e ID: J(D E K	ID: RW-12270CM-090419-F): JC94420-1 DW - Drinking Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, VA				Da Da Pe	ate Sampled: ate Received: ercent Solids:	09/04/19 09/05/19 n/a	
Run #1 Run #2	File ID 1B120860	DF .D 1	Analyzed 09/10/19 13:11		By Prep I BK n/a		Prep Batcl n/a	h Analytical Batch V1B5843	
Run #1 Run #2	Purge Vol 5.0 ml	lume							
VOA List									
CAS No.	Compou	nd	Result	MCL	RL	MDL	Units Q		
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0 108-90-7 75-00-3	Acetone 2-Butano Benzene Bromobe Bromodie Bromodie Bromodie Bromodie Bromodie Bromodie Bromodie Bromodie Chlorobe Chlorobe	ne nzene loromethane chloromethane rm ethane enzene benzene lbenzene isulfide nzene hane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0	$\begin{array}{c} 5.0\\ 5.0\\ 0.50\\ 0$	2.5 0.43 0.16 0.12 0.17 0.13 0.27 0.18 0.068 0.43 0.057 0.18 0.093 0.080	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
67-66-3 74-87-3 95-49-8 106-43-4 56-23-5 75-34-3 75-35-4 563-58-6 96-12-8 106-93-4	Chlorofo Chlorom o-Chloro p-Chloro Carbon te 1,1-Dich 1,1-Dich 1,2-Dibre 1,2-Dibre	rm ethane toluene etrachloride ^a loroethane loroethylene loropropene omo-3-chloropropan omoethane	ND ND ND ND ND ND ND ND ND ND ND	5.0 7.0 0.20 0.050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.17 0.13 0.098 0.075 0.24 0.22 0.19 0.14 0.14 0.15	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3 75-71-8 541-73-1	1,2-Dich 1,2-Dich 1,3-Dich 2,2-Dich Dibromo Dibromo Dichloroo m-Dichlo	loroethane loropropane loropropane chloromethane ^b methane difluoromethane ^b orobenzene	ND ND ND ND ND ND ND	5.0 5.0	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.18 0.19 0.17 0.31 0.14 0.23 0.40 0.14	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		

ND = Not detectedMDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

ω

ω -1
Г

Client Samj Lab Sample Matrix: Method: Project:	ple ID: e ID:	RW-12270CM-09041 JC94420-1 DW - Drinking Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	9-F VA			Da Da Per	te Sampled te Received rcent Solids	: 09/04/19 : 09/05/19 : n/a
VOA List								
CAS No.	Compo	ound	Result	MCL	RL	MDL	Units Q	
95-50-1	o-Dich	lorobenzene	ND	600	0.50	0.14	ug/l	
106-46-7	p-Dich	lorobenzene	ND	75	0.50	0.10	ug/l	
156-60-5	trans-1	2-Dichloroethylene	ND	100	0.50	0.21	ug/l	
156-59-2	cis-1,2	Dichloroethylene	ND	70	0.50	0.14	ug/l	
10061-02-6	trans-1	3-Dichloropropene	ND		0.50	0.18	ug/l	
10061-01-5	cis-1.3	-Dichloropropene	ND		0.50	0.16	ug/l	
100-41-4	Ethvlbe	enzene	ND	700	0.50	0.076	ug/l	
87-68-3	Hexach	lorobutadiene	ND		0.50	0.13	ug/l	
591-78-6	2-Hexa	none	ND		2.0	0.24	ug/l	
98-82-8	Isopror	vlbenzene	ND		0.50	0.054	8 ug/l	
99-87-6	p-Isopr	opyltoluene	ND		0.50	0.43	ug/l	
75-09-2	Methvl	ene chloride	ND	5.0	0.50	0.37	ug/l	
1634-04-4	Methyl	Tert Butyl Ether	ND		0.50	0.11	ug/l	
108-10-1	4-Meth	vl-2-pentanone	ND		2.0	0.22	ug/l	
91-20-3	Naphth	alene	ND		0.50	0.28	ug/l	
103-65-1	n-Prop	vlbenzene	ND		0.50	0.066	8 ug/l	
100-42-5	Stvrene		ND	100	0.50	0.069	ug/l	
630-20-6	1.1.1.2	-Tetrachloroethane	ND		0.50	0.20	8 ug/l	
71-55-6	1.1.1-1	richloroethane	0.27	200	0.50	0.22	ug/l J	
79-34-5	1.1.2.2	-Tetrachloroethane	ND		0.50	0.13	ug/l	
79-00-5	1.1.2-T	richloroethane	ND	5.0	0.50	0.19	ug/l	
87-61-6	1.2.3-1	richlorobenzene	ND		0.50	0.091	ug/l	
96-18-4	1.2.3-T	richloropropane	ND		0.50	0.13	ug/l	
120-82-1	1.2.4-T	richlorobenzene	ND	70	0.50	0.055	8 ug/l	
95-63-6	1.2.4-T	rimethylbenzene	ND		0.50	0.40	8 ug/l	
108-67-8	1.3.5-T	rimethylbenzene	ND		0.50	0.057	8 ug/l	
127-18-4	Tetrach	loroethylene	ND	5.0	0.50	0.23	8 ug/l	
108-88-3	Toluen	e	ND	1000	0.50	0.11	8 ug/l	
79-01-6	Trichlo	roethylene	ND	5.0	0.50	0.20	8 ug/l	
75-69-4	Trichlo	rofluoromethane ^b	ND		1.0	0.19	8 ug/l	
75-01-4	Vinvl c	hloride	ND	2.0	0.50	0.15	ug/l	
	m.p-Xv	lene	ND		0.50	0.14	ug/l	
95-47-6	o-Xvle	ne	ND		0.50	0.076	8 ug/l	
1330-20-7	Xylene	s (total)	ND	10000	0.50	0.076	ug/l	
CAS No.	Surrog	ate Recoveries	Run# 1	Run#	2	Limits		
2199-69-1	1,2-Dio	chlorobenzene-d4	98 %			70-130%		
460-00-4	4-Brom	ofluorobenzene	90%			70-130%		

Report of Analysis

ND = Not detectedMDL = Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

ω -

7 of 41 JC94420

Client Sample Lab Sample II Matrix: Method: Project:	ID: RW-12270CM D: JC94420-1 DW - Drinkin EPA 524.2 R Kop-Flex, Ha	M-090419-F ng Water EV 4.1 anover, VA		Date Sampled: Date Received: Percent Solids:	09/04/19 09/05/19 n/a
VOA List					
CAS No. C	Compound	Result	MCL RL	MDL Units Q	

Report of Analysis

(a) Associated CCV and BS outside of control limits high, sample was ND.(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω -

		Report of Analysis												
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW-12 e ID: JC9442 DW - J SW846 Kop-F	2270CM-0 20-1 Drinking V 3 8260C B lex, Hanov	90419-F Water Y SIM ver, VA			Da Da Pei	te Sampled: te Received: rcent Solids:	09/04/19 09/05/19 n/a						
Run #1 Run #2	File ID 3A162955.D	DF 1	Analyzed 09/11/19 14:47	By RS	Prep n/a	Date	Prep Batcl n/a	n Analytical Batch V3A7059						
Run #1 Run #2	Purge Volume 5.0 ml													
CAS No.	Compound		Result	MCL	RL	MDL	Units Q							
123-91-1	1,4-Dioxane		2.0		0.40	0.095	ug/l							
CAS No.	Surrogate Re	coveries	Run# 1	Run#	2 L	imits								
17647-74-4	1,4-Dioxane-d	18	94%		2	5-195%								

N = Indicates presumptive evidence of a compound

<u>ω</u>

9 of 41

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

	Report of Analysis										
Client Sam Lab Samp Matrix: Method: Project:	nple ID: RW-12270CM-09041 le ID: JC94420-2 DW - Drinking Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	9- /A			D D Po	ate Sampled: ate Received: ercent Solids:	09/04/19 09/05/19 n/a				
Run #1 Run #2	File ID DF DF <t< th=""><th>Analyzed)9/10/19 13:42</th><th>By BK</th><th>Prep n/a</th><th>Date</th><th>Prep Batch n/a</th><th>n Analytical Batch V1B5843</th></t<>	Analyzed)9/10/19 13:42	By BK	Prep n/a	Date	Prep Batch n/a	n Analytical Batch V1B5843				
Run #1 Run #2	Purge Volume 5.0 ml										
VOA List											
CAS No.	Compound	Result	MCL	RL	MDL	Units Q					
67-64-1 78-93-3 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8 98-06-6 75-15-0 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 106 42 4	Acetone 2-Butanone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Chlorobenzene Chloroform Chloromethane o-Chlorotoluene n Chlorotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0	$\begin{array}{c} 5.0\\ 5.0\\ 0.50\\ 0$	$\begin{array}{c} 2.5\\ 0.43\\ 0.16\\ 0.12\\ 0.17\\ 0.13\\ 0.27\\ 0.18\\ 0.068\\ 0.43\\ 0.057\\ 0.18\\ 0.093\\ 0.080\\ 0.17\\ 0.13\\ 0.098\\ 0.075\end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l					
100-43-4 56-23-5 75-34-3 75-35-4 563-58-6 96-12-8 106-93-4 107-06-2 78-87-5 142-28-9 594-20-7 124-48-1 74-95-3 75-71-8 541-73-1	p-Chlorololuene Carbon tetrachloride ^a 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dibromo-3-chloropropan 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane 2,2-Dichloropropane Dibromochloromethane ^b Dibromomethane Dichlorodifluoromethane ^b m-Dichlorobenzene	ND ND ND 4.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.0 7.0 0.20 0.050 5.0 5.0	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ $	0.075 0.24 0.22 0.19 0.14 0.14 0.15 0.18 0.19 0.17 0.31 0.14 0.23 0.40 0.14	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1					

MDL = Method Detection Limit ND = Not detectedMCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

ယ

3.2

Client Sam Lab Sample Matrix: Method: Project:	ple ID: RW-12270CM-0904 e ID: JC94420-2 DW - Drinking Wat EPA 524.2 REV 4.1 Kop-Flex, Hanover,	l19- er l VA			Da Da Per	Date Sampled: Date Received: Percent Solids:				
VOA List										
CAS No.	Compound	Result	MCL	RL	MDL	Units Q				
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.14	ug/l				
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.10	ug/l				
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.21	ug/l				
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.14	ug/l				
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.18	ug/l				
10061-01-5	cis-1,3-Dichloropropene	ND		0.50	0.16	ug/l				
100-41-4	Ethylbenzene	ND	700	0.50	0.076	ug/l				
87-68-3	Hexachlorobutadiene	ND		0.50	0.13	ug/l				
591-78-6	2-Hexanone	ND ND		2.0	0.24	ug/l				
98-82-8	Isopropyidenzene			0.50	0.054	ug/l				
99-87-0 75 00 9	p-isopropyiloiuene Mothylong chloride		5.0	0.30	0.43	ug/l				
73-09-2 1697 07 7	Methyl Tort Putyl Ethon		5.0	0.50	0.37	ug/l				
1034-04-4	A-Mothyl-2-nontanono	ND		0.00 9 A	0.11	ug/l				
01 20 2	4-memyi-2-pentanone Nanhthalana	ND		2.U 0.50	0.22	ug/l				
51-20-3 102-65-1	n-Pronylhonzono	ND		0.30	0.28	ug/l				
100-42-5	Styrana	ND	100	0.50	0.000	ug/1 ug/l				
630-20-6	1 1 1 2-Tetrachloroethane	ND	100	0.50	0.005	ug/1 ug/l				
71-55-6	1, 1, 1-Trichloroethane	0.25	200	0.50	0.22	ug/l J				
79-34-5	1.1.2.2-Tetrachloroethane	ND	200	0.50	0.13	ug/l				
79-00-5	1.1.2-Trichloroethane	ND	5.0	0.50	0.19	ug/l				
87-61-6	1.2.3-Trichlorobenzene	ND		0.50	0.091	ug/l				
96-18-4	1.2.3-Trichloropropane	ND		0.50	0.13	ug/l				
120-82-1	1.2.4-Trichlorobenzene	ND	70	0.50	0.055	ug/l				
95-63-6	1.2.4-Trimethylbenzene	ND		0.50	0.40	ug/l				
108-67-8	1,3,5-Trimethylbenzene	ND		0.50	0.057	ug/l				
127-18-4	Tetrachloroethylene	ND	5.0	0.50	0.23	ug/l				
108-88-3	Toluene	ND	1000	0.50	0.11	ug/l				
79-01-6	Trichloroethylene	ND	5.0	0.50	0.20	ug/l				
75-69-4	Trichlorofluoromethane ^b	ND		1.0	0.19	ug/l				
75-01-4	Vinyl chloride	ND	2.0	0.50	0.15	ug/l				
	m,p-Xylene	ND		0.50	0.14	ug/l				
95-47-6	o-Xylene	ND		0.50	0.076	ug/l				
1330-20-7	Xylenes (total)	ND	10000	0.50	0.076	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits					
2199-69-1	1,2-Dichlorobenzene-d4	95 %			70-130%					
460-00-4	4-Bromofluorobenzene	87 %			70-130%					

Report of Analysis

ND = Not detectedMDL = Method Detection LimitMCL = Maximum Contamination Level (40 CFR 141)E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.2

ω

Client Sample II Lab Sample ID: Matrix: Method: Project:	D: RW-12270CM JC94420-2 DW - Drinkin EPA 524.2 R Kop-Flex, Ha	M-090419- ng Water EV 4.1 anover, VA		Date Sampled: Date Received: Percent Solids:	09/04/19 09/05/19 n/a
VOA List					
CAS No. Cor	npound	Result	MCL RL	MDL Units Q	

Report of Analysis

(a) Associated CCV and BS outside of control limits high, sample was ND.(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound
 - 12 of 41

JC94420

ယ

Page 3 of 3

		Report of Analysis												
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: RW-12 e ID: JC944 DW - SW840 Kop-F	2270CM-0 20-2 Drinking V 5 8260C B lex, Hanov	90419- Vater Y SIM ver, VA			Da Da Pei	te Sampled: te Received: rcent Solids:	09/04/19 09/05/19 n/a						
Run #1 Run #2	File ID 3A162956.D	DF 1	Analyzed 09/11/19 15:16	By RS	Prep n/a	Date	Prep Batcl n/a	n Analytical Batch V3A7059						
Run #1 Run #2	Purge Volume 5.0 ml													
CAS No.	Compound		Result	MCL	RL	MDL	Units Q							
123-91-1	1,4-Dioxane		2.0		0.40	0.095	ug/l							
CAS No.	Surrogate Re	coveries	Run# 1	Run#	2 L	imits								
17647-74-4	1,4-Dioxane-d	18	95%		2	5-195%								

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sam Lab Sampl	ple ID: TB-090419 le ID: JC94420-3	- mn			Da	te Sampled:	09/04/19
Matrix:	DW - Drinking Water	r TB			Da	te Received:	09/05/19
Method:	EPA 524.2 KEV 4.1	4.7 A			Pe	rcent Solids:	n/a
Project:	Kop-Flex, Hanover,	VA					
Run #1 Run #2	File ID DF 1B120865.D 1	Analyzed 09/10/19 15:47	By 'BK	Prep n/a	p Date	Prep Bate n/a	ch Analytical Batch V1B5843
Run #1 Run #2	Purge Volume 5.0 ml						
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
67-64-1	Acetone	ND		5.0	2.5	ug/l	
78-93-3	2-Butanone	ND		5.0	0.43	ug/l	
71-43-2	Benzene	ND	5.0	0.50	0.16	ug/l	
108-86-1	Bromobenzene	ND		0.50	0.12	ug/l	
74-97-5	Bromochloromethane	ND		0.50	0.17	ug/l	
75-27-4	Bromodichloromethane	ND		0.50	0.13	ug/l	
75-25-2	Bromoform	ND		0.50	0.27	ug/l	
74-83-9	Bromomethane	ND		0.50	0.18	ug/l	
104-51-8	n-Butylbenzene	ND		0.50	0.068	ug/l	
135-98-8	sec-Butylbenzene	ND		0.50	0.43	ug/l	
98-06-6	tert-Butylbenzene	ND		0.50	0.057	ug/l	
75-15-0	Carbon disulfide	ND		0.50	0.18	ug/l	
108-90-7	Chlorobenzene	ND	100	0.50	0.093	ug/l	
75-00-3	Chloroethane	ND		0.50	0.080	ug/l	
67-66-3	Chloroform	ND		0.50	0.17	ug/l	
74-87-3	Chloromethane	ND		0.50	0.13	ug/l	
95-49-8	o-Chlorotoluene	ND		0.50	0.098	ug/l	
106-43-4	p-Chlorotoluene	ND		0.50	0.075	ug/l	
56-23-5	Carbon tetrachloride ^a	ND	5.0	0.50	0.24	ug/l	
75-34-3	1,1-Dichloroethane	ND		0.50	0.22	ug/l	
75-35-4	1,1-Dichloroethylene	ND	7.0	0.50	0.19	ug/l	
563-58-6	1,1-Dichloropropene	ND		0.50	0.14	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan	e ND	0.20	1.0	0.14	ug/l	
106-93-4	1,2-Dibromoethane	ND	0.050	0.50	0.15	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	0.50	0.18	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	0.50	0.19	ug/l	
142-28-9	1,3-Dichloropropane	ND		0.50	0.17	ug/l	
594-20-7	2,2-Dichloropropane	ND		0.50	0.31	ug/l	
124-48-1	Dibromochloromethane ^b	ND		0.50	0.14	ug/l	
74-95-3	Dibromomethane	ND		0.50	0.23	ug/l	
75-71-8	Dichlorodifluoromethane ^b	ND		0.50	0.40	ug/l	
541-73-1	m-Dichlorobenzene	ND		0.50	0.14	ug/l	

MDL = Method Detection Limit ND = Not detected MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

ω

ယ ပ

Report of Analysis

Client Samp Lab Sample Matrix: Method: Project:	ole ID: TB-090419 E ID: JC94420-3 DW - Drinking Water EPA 524.2 REV 4.1 Kop-Flex, Hanover, V	TB /A			Da Da Per	te Sampled: te Received: rcent Solids:	09/04/19 09/05/19 n/a
VOA List							
CAS No.	Compound	Result	MCL	RL	MDL	Units Q	
95-50-1	o-Dichlorobenzene	ND	600	0.50	0.14	ug/l	
106-46-7	p-Dichlorobenzene	ND	75	0.50	0.10	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	100	0.50	0.21	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	70	0.50	0.14	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.50	0.18	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.50	0.16	ug/l	
100-41-4	Ethylbenzene	ND	700	0.50	0.076	ug/l	
87-68-3	Hexachlorobutadiene	ND		0.50	0.13	ug/l	
591-78-6	2-Hexanone	ND		2.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND		0.50	0.054	ug/l	
99-87-6	p-Isopropyltoluene	ND		0.50	0.43	ug/l	
75-09-2	Methylene chloride	ND	5.0	0.50	0.37	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND		0.50	0.11	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		2.0	0.22	ug/l	
91-20-3	Naphthalene	ND		0.50	0.28	ug/l	
103-65-1	n-Propylbenzene	ND		0.50	0.066	ug/l	
100-42-5	Styrene	ND	100	0.50	0.069	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	0.50	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.50	0.13	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.50	0.19	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND		0.50	0.091	ug/l	
96-18-4	1,2,3-Trichloropropane	ND		0.50	0.13	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	70	0.50	0.055	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND		0.50	0.40	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND		0.50	0.057	ug/l	
127-18-4	Tetrachloroethylene	ND	5.0	0.50	0.23	ug/l	
108-88-3	Toluene	ND	1000	0.50	0.11	ug/l	
79-01-6	Trichloroethylene	ND	5.0	0.50	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND		1.0	0.19	ug/l	
75-01-4	Vinyl chloride	ND	2.0	0.50	0.15	ug/l	
	m,p-Xylene	ND		0.50	0.14	ug/l	
95-47-6	o-Xylene	ND		0.50	0.076	ug/l	
1330-20-7	Xylenes (total)	ND	10000	0.50	0.076	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2	Limits		
2199-69-1	1.2-Dichlorobenzene-d4	102%			70-130%		
460-00-4	4-Bromofluorobenzene	90%			70-130%		

ND = Not detected **MDL** = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ပ

ω

15 of 41 SGS

Client Sample ID:	TB-090419			Dete Community	
Lab Sample ID: Matrix:	JC94420-3 DW - Drinking V	Water TB		Date Sampled Date Received	1: 09/04/19 1: 09/05/19
Method: Project:	EPA 524.2 REV Kop-Flex, Hanov	4.1 ver, VA		Percent Solid	s: n/a
VOA List	_				
CAS No. Com	pound	Result	MCL RL	MDL Units C)

Report of Analysis

(a) Associated CCV and BS outside of control limits high, sample was ND.(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

ω

			Report	of A	nalys	is		Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: TB-09 e ID: JC944 DW - SW840 Kop-F	0419 20-3 Drinking W 6 8260C BY lex, Hanov	Vater TB Y SIM er, VA			Da Da Per	te Sampled: 0 te Received: 0 rcent Solids: n	9/04/19 9/05/19 //a
Run #1 Run #2	File ID 3A162954.D	DF 1	Analyzed 09/11/19 14:18	By RS	Prej n/a	o Date	Prep Batch n/a	Analytical Batch V3A7059
Run #1 Run #2	Purge Volume 5.0 ml	!						
CAS No.	Compound		Result	MCL	RL	MDL	Units Q	
123-91-1	1,4-Dioxane		ND		0.40	0.095	ug/l	
CAS No.	Surrogate Re	coveries	Run# 1	Run#	2 I	limits		
17647-74-4	1,4-Dioxane-c	18	98 %		2	5-195%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 141) **E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ယ

ω

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

DU, WT	iB		CHAIN-O	F-CU	STO	DY R	ECO	RD			K	D(-0	おこり	19-1	19	Page of
WSP Parsons Brinckerhoff Office Address 13530 Pulles Technology	Cax D	V. SUHE	to Acrida.	VI		4	Requ	ested A	nalyse	s & Pre	servati	ves			No. 004542	
Project Name	WSP Parson	IS Brinckerhoff Contac	t Name			Š					SC	1410	12 0		aboratory Name & Location	And I I
Project Location	WSP Parson	is Brinckerhoff Contac	t E-mali			60								-	aboratory Project Manager	HI Utest
HUNOVEL, AD Project Number & Task	Chri WSP Parson), (REJC) Is Brinckerhoff Contac	@wspgroup	.com		5									Tampy Mel	Toskey
3/90/595.0//-02 Sampler(s) Name(s)	7/15 Sampler(s) Si	-109-65	00	sers	24	200								ľ	Requested Turn-Around-Tir	ne 24 HR
Chris Cresci	C	hr	_ I	Contai	رم ک	jon										72 HR
Shannon Burke		Collection Start*	Collection Stop*	nber of	00	7									HRHR	
Sample Identification	Matrix D	ate Time	Date Time	ير م	7	7		(0.4	1		- 4 F) - 4 F)	22	Sample Comments	
2 Physical Contraction	24.	9/11/19		0	X	רן א א	6 × 8	3.29	94948 I	6.14	80. 1	8.914				an a
2 There was		119119		4					* 44	in i	×-	100	ə.i P	÷.	e de	U878 -
									1.7.2	90.10 <u>9</u>	506.50 <u>5</u> H	2.1% ¥				
							e Sec		Â		i di			4-13 - 19		· · · patron
Solition	<u>新行成の時間</u> 250-110			n gorano		and strong	89761-X	97.3.844 8	1999 - 1996 - 1	10536,70.20	Bara 206 43	1.009 940	1000	91064096		
- 1.23 AN	c Six									S. Salata						A Start
and an article				13 23	an a					4			1	4		
	2946-056 Gaze 12	and a state of the state of the			0.35	1. 1. 12	100000	electron a	a a a a a a a a a a a a a a a a a a a		2.1.920	er 18 12	1.00			MAT 3A
					100 100 100										LABEL VERIFI	CATION
	CREW Same			2019	1.11	i.			-	5.8 8	1				er	an she
				1041											3 88 1	PID
	1. A. 1. A. 1.	W Bassi		1.53	See.	5. S			1	4. 194		and a second			0 - E	- Ano
Relinquished By (Signature) Date	r	me Received I	By (Signature)		Dat	0		Time		Shipmer	nt Metho	d			Tracking Number(s)	
Relinquished By (Signature) Date	4/19/1	IIS me Received E	Hm- By (Signature)		Dat	xe (Time		H-C Number	OE of Pack	X ages			Custody Seal Number(s)	34018
For 915	6	1030	\sim	١		٩/١٢	1.9	/0	30	١	۱	·				0 01 11 11 11 11 11 11 11 11 11 11 11 11

JC94420: Chain of Custody Page 1 of 2 4:1

4

SGS Sample Receipt Summary

Job Number: JCS	4420	Clien	: WSP		Project: KOP-FLEX, HANG	OVER, V	A	
Date / Time Received: 9/5/	2019 10:3	0:00 AM	Delivery N	lethod:	Airbill #'s:			
Cooler Temps (Raw Measur Cooler Temps (Correct	ed) °C: (ed) °C: (Cooler 1: (3.8 Cooler 1: (3.7	;); ');					
Cooler Security No. 1. Custody Seals Present: 2 2. Custody Seals Intact: 2 Cooler Temperature 2 1. Temp criteria achieved: 2 2. Cooler temp verification: 3 3. Cooler media: 4	<u>vor N</u> 1 □ 1 □ <u>Yo</u> IR Ice	3. COC 4. Smpl Da <u>r N</u> 2: Gun (Bag) 1	Present: tes/Time OK – –	<u>Y</u> or N ☑ □ ☑ □	 Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: 	Y V V Y V	or N 	
Quality Control_Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly 4. VOCs headspace free:	n Y V V V		A]]		 Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear: 	Y	or N 	<u>N/A</u> V V
Test Strip Lot #s: p	H 1-12:	229517		pH 12+:	208717 Other: (Specify)			

SM089-03 Rev. Date 12/7/17

JC94420: Chain of Custody

Page 2 of 2

4.1

4

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Surrogate Recovery Summaries

JC94420

Method Blank Summary

Project:	Kop-Flex, Hanover, VA	
Account:	ESCVAR WSP Environment & Energy	
Job Number:	JC94420	

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1B5843-MB	1B120856.D	1	09/10/19	BK	n/a	n/a	V1B5843
The QC reporte	d here applies to	the follo	wing samples:			Method: EPA 5	524.2 REV 4.1

JC94420-1, JC94420-2, JC94420-3

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	5.0	2.5	ug/l
78-93-3	2-Butanone	ND	5.0	0.43	ug/l
71-43-2	Benzene	ND	0.50	0.16	ug/l
108-86-1	Bromobenzene	ND	0.50	0.12	ug/l
74-97-5	Bromochloromethane	ND	0.50	0.17	ug/l
75-27-4	Bromodichloromethane	ND	0.50	0.13	ug/l
75-25-2	Bromoform	ND	0.50	0.27	ug/l
74-83-9	Bromomethane	ND	0.50	0.18	ug/l
104-51-8	n-Butylbenzene	ND	0.50	0.068	ug/l
135-98-8	sec-Butylbenzene	ND	0.50	0.43	ug/l
98-06-6	tert-Butylbenzene	ND	0.50	0.057	ug/l
75-15-0	Carbon disulfide	ND	0.50	0.18	ug/l
108-90-7	Chlorobenzene	ND	0.50	0.093	ug/l
75-00-3	Chloroethane	ND	0.50	0.080	ug/l
67-66-3	Chloroform	ND	0.50	0.17	ug/l
74-87-3	Chloromethane	ND	0.50	0.13	ug/l
95-49-8	o-Chlorotoluene	ND	0.50	0.098	ug/l
106-43-4	p-Chlorotoluene	ND	0.50	0.075	ug/l
56-23-5	Carbon tetrachloride	ND	0.50	0.24	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	0.22	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	0.19	ug/l
563-58-6	1,1-Dichloropropene	ND	0.50	0.14	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.0	0.14	ug/l
106-93-4	1,2-Dibromoethane	ND	0.50	0.15	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	0.18	ug/l
78-87-5	1,2-Dichloropropane	ND	0.50	0.19	ug/l
142-28-9	1,3-Dichloropropane	ND	0.50	0.17	ug/l
594-20-7	2,2-Dichloropropane	ND	0.50	0.31	ug/l
124-48-1	Dibromochloromethane	ND	0.50	0.14	ug/l
74-95-3	Dibromomethane	ND	0.50	0.23	ug/l
75-71-8	Dichlorodifluoromethane	ND	0.50	0.40	ug/l
541-73-1	m-Dichlorobenzene	ND	0.50	0.14	ug/l
95-50-1	o-Dichlorobenzene	ND	0.50	0.14	ug/l
106-46-7	p-Dichlorobenzene	ND	0.50	0.10	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	0.21	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	0.14	ug/l

Page 1 of 3

5.1.1 **5**

JC94420

Method Blank Summary

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1B5843-MB	1B120856.D	1	09/10/19	BK	n/a	n/a	V1B5843
The QC reported here applies to the following samples: Method: EPA 524.2 REV 4.1							

JC94420-1, JC94420-2, JC94420-3

CAS No.	Compound	Result	RL	MDL	Units	Q
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.16	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.18	ug/l	
100-41-4	Ethylbenzene	ND	0.50	0.076	ug/l	
87-68-3	Hexachlorobutadiene	ND	0.50	0.13	ug/l	
591-78-6	2-Hexanone	ND	2.0	0.24	ug/l	
98-82-8	Isopropylbenzene	ND	0.50	0.054	ug/l	
99-87-6	p-Isopropyltoluene	ND	0.50	0.43	ug/l	
75-09-2	Methylene chloride	ND	0.50	0.37	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	0.50	0.11	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	2.0	0.22	ug/l	
91-20-3	Naphthalene	ND	0.50	0.28	ug/l	
103-65-1	n-Propylbenzene	ND	0.50	0.066	ug/l	
100-42-5	Styrene	ND	0.50	0.069	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.13	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	0.50	0.19	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	0.50	0.091	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	0.50	0.13	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	0.055	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	0.40	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	0.057	ug/l	
127-18-4	Tetrachloroethylene	ND	0.50	0.23	ug/l	
108-88-3	Toluene	ND	0.50	0.11	ug/l	
79-01-6	Trichloroethylene	ND	0.50	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.19	ug/l	
75-01-4	Vinyl chloride	ND	0.50	0.15	ug/l	
	m,p-Xylene	ND	0.50	0.14	ug/l	
95-47-6	o-Xylene	ND	0.50	0.076	ug/l	
1330-20-7	Xylenes (total)	ND	0.50	0.076	ug/l	
CAS No.	Surrogate Recoveries		Limits			
2199-69-1	1,2-Dichlorobenzene-d4	100%	70-130%	6		
460-00-4	4-Bromofluorobenzene	90%	70-130%	6		

Page 2 of 3

5.1.1 **5**

Method Blank Summary Job Number: JC94420

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA									
Sample V1B5843-M	File ID IB 1B120856.D	DF 1	Analyzed 09/10/19	By BK	Prep Date n/a	Pre n/a	ep Batch	Analytical Batch V1B5843			
The QC rep JC94420-1,	Method:										
CAS No.	Tentatively Identifi	ed Compo	unds	R.T.	Est. Conc.	Units	Q				
	system artifact Total TIC, Volatile		:	3.66	.87 0	ug/l ug/l	J				

Method Blank Summary

Job Numbe Account: Project:	r: JC94420 ESCVAR WSP E Kop-Flex, Hanov	Environn er, VA	ient & Energ	gy				
Sample V3A7059-M	File ID 1B 3A162945.D	DF 1	Analyz 09/11/	zed By 19 RS	Pre n/a	ep Date	Prep Batch n/a	Analytical Batch V3A7059
The QC rep JC94420-1,	ported here applies to JC94420-2, JC94420-	the foll 3	owing samp	oles:			Method: SW84	6 8260C BY SIM
CAS No.	Compound		Result	RL	MDL	Units	Q	
123-91-1	1,4-Dioxane		ND	0.40	0.095	ug/l		
CAS No.	Surrogate Recoverie	s		Limits				
17647-74-4	1,4-Dioxane-d8		113%	25-195	%			

сл

Page 1 of 1

Blank Spike Summary Job Number: JC94420

Account:	ESCVAR WSP Environment & Energy								
Project:	Kop-Flex, Hanover, VA								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
V1B5843-BS	1B120855.D	1	09/10/19	BK	n/a	n/a	V1B5843		
The QC repor	ted here applies to	the follo	wing samples:			Method: EPA 5	24.2 REV 4.1		

JC94420-1, JC94420-2, JC94420-3

	~ .	Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
67-64-1	Acetone	20	15.8	79	70-130
78-93-3	2-Butanone	20	15.1	76	70-130
71-43-2	Benzene	5	4.4	88	70-130
108-86-1	Bromobenzene	5	4.4	88	70-130
74-97-5	Bromochloromethane	5	4.9	98	70-130
75-27-4	Bromodichloromethane	5	4.9	98	70-130
75-25-2	Bromoform	5	5.7	114	70-130
74-83-9	Bromomethane	5	5.2	104	70-130
104-51-8	n-Butylbenzene	5	4.1	82	70-130
135-98-8	sec-Butylbenzene	5	4.2	84	70-130
98-06-6	tert-Butylbenzene	5	4.0	80	70-130
75-15-0	Carbon disulfide	5	4.9	98	70-130
108-90-7	Chlorobenzene	5	4.3	86	70-130
75-00-3	Chloroethane	5	5.4	108	70-130
67-66-3	Chloroform	5	4.5	90	70-130
74-87-3	Chloromethane	5	5.0	100	70-130
95-49-8	o-Chlorotoluene	5	4.2	84	70-130
106-43-4	p-Chlorotoluene	5	4.2	84	70-130
56-23-5	Carbon tetrachloride	5	8.0	160* a	70-130
75-34-3	1,1-Dichloroethane	5	4.6	92	70-130
75-35-4	1,1-Dichloroethylene	5	4.3	86	70-130
563-58-6	1,1-Dichloropropene	5	4.3	86	70-130
96-12-8	1,2-Dibromo-3-chloropropane	5	4.5	90	70-130
106-93-4	1,2-Dibromoethane	5	4.3	86	70-130
107-06-2	1,2-Dichloroethane	5	4.3	86	70-130
78-87-5	1,2-Dichloropropane	5	4.4	88	70-130
142-28-9	1,3-Dichloropropane	5	4.3	86	70-130
594-20-7	2,2-Dichloropropane	5	4.8	96	70-130
124-48-1	Dibromochloromethane	5	5.6	112	70-130
74-95-3	Dibromomethane	5	4.6	92	70-130
75-71-8	Dichlorodifluoromethane	5	5.5	110	70-130
541-73-1	m-Dichlorobenzene	5	4.5	90	70-130
95-50-1	o-Dichlorobenzene	5	4.6	92	70-130
106-46-7	p-Dichlorobenzene	5	4.4	88	70-130
156-60-5	trans-1,2-Dichloroethylene	5	4.6	92	70-130
156-59-2	cis-1,2-Dichloroethylene	5	4.4	88	70-130

* = Outside of Control Limits.

26 of 41 JC94420

Page 1 of 3

5.2.1 5

Blank Spike Summary

Job Number: Account: Project:	ESCVAR WSP Environment & Energy Kop-Flex, Hanover, VA									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
V1B5843-BS	1B120855.D	1	09/10/19	BK	n/a	n/a	V1B5843			

The QC reported here applies to the following samples:

JC94420-1, JC94420-2, JC94420-3

		Spike	BSI	P	BSP	
CAS No.	Compound	ug/l	ug/	I	%	Limits
10061-01-5	cis-1,3-Dichloropropene	5	4.0		80	70-130
10061-02-6	trans-1,3-Dichloropropene	5	4.4		88	70-130
100-41-4	Ethylbenzene	5	4.1		82	70-130
87-68-3	Hexachlorobutadiene	5	4.9		98	70-130
591-78-6	2-Hexanone	20	15.	1	76	70-130
98-82-8	Isopropylbenzene	5	3.9		78	70-130
99-87-6	p-Isopropyltoluene	5	4.0		80	70-130
75-09-2	Methylene chloride	5	4.7		94	70-130
1634-04-4	Methyl Tert Butyl Ether	5	4.0		80	70-130
108-10-1	4-Methyl-2-pentanone	20	15.4	4	77	70-130
91-20-3	Naphthalene	5	3.9		78	70-130
103-65-1	n-Propylbenzene	5	4.1		82	70-130
100-42-5	Styrene	5	3.7		74	70-130
630-20-6	1,1,1,2-Tetrachloroethane	5	5.2		104	70-130
71-55-6	1,1,1-Trichloroethane	5	5.0		100	70-130
79-34-5	1,1,2,2-Tetrachloroethane	5	4.6		92	70-130
79-00-5	1,1,2-Trichloroethane	5	4.5		90	70-130
87-61-6	1,2,3-Trichlorobenzene	5	4.4		88	70-130
96-18-4	1,2,3-Trichloropropane	5	4.6		92	70-130
120-82-1	1,2,4-Trichlorobenzene	5	4.4		88	70-130
95-63-6	1,2,4-Trimethylbenzene	5	4.1		82	70-130
108-67-8	1,3,5-Trimethylbenzene	5	4.1		82	70-130
127-18-4	Tetrachloroethylene	5	4.0		80	70-130
108-88-3	Toluene	5	4.0		80	70-130
79-01-6	Trichloroethylene	5	4.1		82	70-130
75-69-4	Trichlorofluoromethane	5	5.5		110	70-130
75-01-4	Vinyl chloride	5	5.4		108	70-130
	m,p-Xylene	10	8.1		81	70-130
95-47-6	o-Xylene	5	4.0		80	70-130
1330-20-7	Xylenes (total)	15	12.	1	81	70-130
CAS No.	Surrogate Recoveries	BSP		Lim	its	
2199-69-1	1,2-Dichlorobenzene-d4	108%		70-1	30 %	
460-00-4	4-Bromofluorobenzene	97%		70-1	30 %	

* = Outside of Control Limits.

Method: EPA 524.2 REV 4.1

5.2.1

G

Blank Spike Summary

Job Number: Account: Project:	JC94420 ESCVAR WSP E Kop-Flex, Hanov	Environm /er, VA	ent & Energy				
Sample V1B5843-BS	File ID 1B120855.D	DF 1	Analyzed 09/10/19	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V1B5843
The QC repor	ted here applies to	the follo	wing samples:			Method: EPA 5	524.2 REV 4.1

JC94420-1, JC94420-2, JC94420-3

(a) High percent recoveries and no associated positive reported in the QC batch.

28 of 41

JC94420

5.2.1 **5**

Blank Spike Summary

17647-74-4 1,4-Dioxane-d8

Job Number Account: Project:	r: JC94420 ESCVAR WSP E Kop-Flex, Hanov	Environm er, VA	ent & En	ergy				Ū
Sample V3A7059-BS	File ID S 3A162944.D	DF 1	Ana 09/1	lyzed 1/19	By RS	Prep Date n/a	Prep Batch n/a	Analytical Batch V3A7059
The QC rep JC94420-1, .	orted here applies to JC94420-2, JC94420-	the follo 3		Method: SW840	3 8260C BY SIM			
CAS No.	Compound		Spike ug/l	BSP ug/l	BSP %	Limits		
123-91-1	1,4-Dioxane		20	19.7	99	48-137		
CAS No.	Surrogate Recoverie	s	BSP	L	imits			

25-195%

104%

Matrix Spike Summary Job Number: JC94420

Prep Batch
n/a
n/a

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC94420-1, JC94420-2, JC94420-3

		JC94579-1		Spike	MS	MS		
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	Limits	
67-64-1	Acetone	14.0		20	26.0	60	41-142	
78-93-3	2-Butanone	5.8		20	20.2	72	55-129	
71-43-2	Benzene	ND		5	4.0	80	53-138	
108-86-1	Bromobenzene	ND		5	4.1	82	54-138	
74-97-5	Bromochloromethane	ND		5	4.4	88	55-140	
75-27-4	Bromodichloromethane	ND		5	4.3	86	57-147	
75-25-2	Bromoform	ND		5	5.7	114	47-137	
74-83-9	Bromomethane	ND		5	5.3	106	40-162	
104-51-8	n-Butylbenzene	ND		5	3.6	72	45-144	
135-98-8	sec-Butylbenzene	ND		5	3.7	74	46-145	
98-06-6	tert-Butylbenzene	ND		5	3.5	70	48-141	
75-15-0	Carbon disulfide	ND		5	4.4	88	35-127	
108-90-7	Chlorobenzene	ND		5	3.9	78	54-135	
75-00-3	Chloroethane	ND		5	5.4	108	38-153	
67-66-3	Chloroform	ND		5	3.9	78	57-151	
74-87-3	Chloromethane	ND		5	5.4	108	39-165	
95-49-8	o-Chlorotoluene	ND		5	3.8	76	55-142	
106-43-4	p-Chlorotoluene	ND		5	3.8	76	55-139	
56-23-5	Carbon tetrachloride	ND		5	7.5	150	49-170	
75-34-3	1,1-Dichloroethane	ND		5	4.4	88	55-149	
75-35-4	1,1-Dichloroethylene	ND		5	4.1	82	42-142	
563-58-6	1,1-Dichloropropene	ND		5	3.9	78	46-151	
96-12-8	1,2-Dibromo-3-chloropropane	ND		5	4.6	92	48-141	
106-93-4	1,2-Dibromoethane	ND		5	4.0	80	57-135	
107-06-2	1,2-Dichloroethane	0.35	J	5	4.1	75	59-166	
78-87-5	1,2-Dichloropropane	ND		5	4.0	80	53-142	
142-28-9	1.3-Dichloropropane	ND		5	4.1	82	58-143	
594-20-7	2.2-Dichloropropane	ND		5	4.5	90	38-165	
124-48-1	Dibromochloromethane	ND		5	5.1	102	55-138	
74-95-3	Dibromomethane	ND		5	4.0	80	61-144	
75-71-8	Dichlorodifluoromethane	ND		5	5.7	114	23-172	
541-73-1	m-Dichlorobenzene	ND		5	4.2	84	53-138	
95-50-1	o-Dichlorobenzene	ND		5	4.3	86	54-140	
106-46-7	p-Dichlorobenzene	ND		5	4.0	80	53-137	
156-60-5	trans-1.2-Dichloroethylene	ND		5	4.3	86	47-148	
156-59-2	cis-1,2-Dichloroethylene	ND		5	4.2	84	51-146	
100 00 %	is 1,2 Diemorocurrent							

* = Outside of Control Limits.

Analytical Batch V1B5843

V1B5843

Matrix Spike Summary Job Number: JC94420

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm er, VA	ent & Energy			
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch
JC94579-1MS	1B120867.D	1	09/10/19	BK	n/a	n/a
JC94579-1	1B120862.D	1	09/10/19	BK	n/a	n/a

The QC reported here applies to the following samples:

JC94420-1, JC94420-2, JC94420-3

		JC94579-1		Spike MS		S MS		
CAS No.	Compound	ug/l	Q	ug/l	ug/	1	%	Limits
10061-01-5	cis-1,3-Dichloropropene	ND		5	3.6		72	51-136
10061-02-6	trans-1,3-Dichloropropene	ND		5	3.9		78	54-142
100-41-4	Ethylbenzene	ND		5	3.6		72	51-138
87-68-3	Hexachlorobutadiene	ND		5	4.3		86	40-154
591-78-6	2-Hexanone	ND		20	15.	7	79	53-128
98-82-8	Isopropylbenzene	ND		5	3.5		70	49-139
99-87-6	p-Isopropyltoluene	ND		5	3.6		72	45-141
75-09-2	Methylene chloride	ND		5	4.2		84	54-137
1634-04-4	Methyl Tert Butyl Ether	6.5		5	10.	3	76	53-143
108-10-1	4-Methyl-2-pentanone	ND		20	16.	0	80	58-127
91-20-3	Naphthalene	ND		5	3.6		72	44-140
103-65-1	n-Propylbenzene	ND		5	3.6		72	50-142
100-42-5	Styrene	ND		5	3.3		66	23-130
630-20-6	1,1,1,2-Tetrachloroethane	ND		5	4.8		96	57-144
71-55-6	1,1,1-Trichloroethane	ND		5	4.7		94	52-164
79-34-5	1,1,2,2-Tetrachloroethane	ND		5	4.8		96	58-138
79-00-5	1,1,2-Trichloroethane	ND		5	4.1		82	59-139
87-61-6	1.2.3-Trichlorobenzene	ND		5	3.9		78	47-141
96-18-4	1.2.3-Trichloropropane	ND		5	4.8		96	56-148
120-82-1	1.2.4-Trichlorobenzene	ND		5	3.8		76	46-137
95-63-6	1.2.4-Trimethylbenzene	ND		5	3.6		72	41-138
108-67-8	1.3.5-Trimethylbenzene	ND		5	3.6		72	45-138
127-18-4	Tetrachloroethylene	ND		5	3.8		76	45-145
108-88-3	Toluene	ND		5	3.7		74	52-134
79-01-6	Trichloroethylene	0.47	J	5	4.2		75	54-143
75-69-4	Trichlorofluoromethane	ND		5	5.6		112	36-167
75-01-4	Vinyl chloride	ND		5	5.6		112	35-162
	m n-Xvlene	ND		10	7.2		72	49-135
95-47-6	o-Xvlene	ND		5	3.5		70	49-134
1330-20-7	Xvlenes (total)	ND		15	10	7	71	50-134
1000 20 1				10	10.			00 101
CAS No.	Surrogate Recoveries	MS		JC94579	-1	Limi	ts	
2199-69-1	1.2-Dichlorobenzene-d4	105%		98 %		70-13	30 %	
460-00-4	4-Bromofluorobenzene	93%		88%		70-1	30%	
		00/0		00/0				

* = Outside of Control Limits.

Analytical Batch V1B5843

V1B5843

Method: EPA 524.2 REV 4.1

	Matrix SpikJob Number:JAccount:IProject:I	e /Matrix \$ C94420 ESCVAR WSP Kop-Flex, Han	Spike I PEnvironn over, VA	Duplica	te Su ergy	mmary					Page 1 of 1
	Sample	File ID	DF	Ana	lyzed	By	Prep Date	Pr	ep Batch	Ana	lytical Batch
	JC94534-1MS	3A162949.I	D 1	09/1	1/19	RS	n/a	n/a	l	V3A	7059
	JC94534-1MSD	3A162950.I	D 1	09/1	1/19	RS	n/a	n/a	l	V3A	7059
	JC94534-1	3A162946.I) 1	09/1	1/19	RS	n/a	n/a	l	V3A	7059
	JC94420-1, JC94	420-2, JC9442	0-3								
CAS No.	Compound	1	JC94534-1 ug/l (l Spike) ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
123-91-1	1,4-Dioxane		12.2	20	27.8	78	20	26.8	73	4	28-162/64
CAS No.	Surrogate Recov	eries	MS	MSD	J	IC94534-1	Limits				

130%

25-195%

104%

97%

17647-74-4 1,4-Dioxane-d8

32 of 41

JC94420

5.4.1

G

Duplicate Summary Job Number: JC94420

ESCVAR WSP E Kop-Flex, Hanov	Environm ver, VA	ent & Energy				
File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
1B120864.D	1	09/10/19	BK	n/a	n/a	V1B5843
1B120861.D	1	09/10/19	BK	n/a	n/a	V1B5843
	ESCVAR WSP E	ESCVAR WSP Environm	ESCVAR WSP Environment & Energy	ESCVAR WSP Environment & Energy	ESCVAR WSP Environment & Energy	ESCVAR WSP Environment & Energy
	Kop-Flex, Hanov	Kop-Flex, Hanover, VA	Kop-Flex, Hanover, VA	Kop-Flex, Hanover, VA	Kop-Flex, Hanover, VA	Kop-Flex, Hanover, VA
	File ID	File ID DF	File ID DF Analyzed	File ID DF Analyzed By	File ID DF Analyzed By Prep Date	File ID DF Analyzed By Prep Date Prep Batch
	1B120864.D	1B120864.D 1	1B120864.D 1 09/10/19	1B120864.D 1 09/10/19 BK	1B120864.D 1 09/10/19 BK n/a	1B120864.D 1 09/10/19 BK n/a n/a
	1B120861.D	1B120861.D 1	1B120861.D 1 09/10/19	1B120861.D 1 09/10/19 BK	1B120861.D 1 09/10/19 BK n/a	1B120861.D 1 09/10/19 BK n/a n/a

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

JC94420-1, JC94420-2, JC94420-3

		JC94420	-2	DUP				
CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits	
67-64-1	Acetone	ND		ND		nc	10	
78-93-3	2-Butanone	ND		ND		nc	12	
71-43-2	Benzene	ND		ND		nc	10	
108-86-1	Bromobenzene	ND		ND		nc	10	
74-97-5	Bromochloromethane	ND		ND		nc	10	
75-27-4	Bromodichloromethane	ND		ND		nc	10	
75-25-2	Bromoform	ND		ND		nc	10	
74-83-9	Bromomethane	ND		ND		nc	10	
104-51-8	n-Butylbenzene	ND		ND		nc	10	
135-98-8	sec-Butylbenzene	ND		ND		nc	10	
98-06-6	tert-Butylbenzene	ND		ND		nc	10	
75-15-0	Carbon disulfide	ND		ND		nc	19	
108-90-7	Chlorobenzene	ND		ND		nc	10	
75-00-3	Chloroethane	ND		ND		nc	10	
67-66-3	Chloroform	ND		ND		nc	12	
74-87-3	Chloromethane	ND		ND		nc	10	
95-49-8	o-Chlorotoluene	ND		ND		nc	10	
106-43-4	p-Chlorotoluene	ND		ND		nc	10	
56-23-5	Carbon tetrachloride	ND		ND		nc	10	
75-34-3	1,1-Dichloroethane	ND		ND		nc	10	
75-35-4	1,1-Dichloroethylene	4.8		5.4		12* ^a	10	
563-58-6	1,1-Dichloropropene	ND		ND		nc	10	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ND		nc	10	
106-93-4	1,2-Dibromoethane	ND		ND		nc	10	
107-06-2	1,2-Dichloroethane	ND		ND		nc	10	
78-87-5	1,2-Dichloropropane	ND		ND		nc	10	
142-28-9	1,3-Dichloropropane	ND		ND		nc	10	
594-20-7	2,2-Dichloropropane	ND		ND		nc	10	
124-48-1	Dibromochloromethane	ND		ND		nc	10	
74-95-3	Dibromomethane	ND		ND		nc	10	
75-71-8	Dichlorodifluoromethane	ND		ND		nc	10	
541-73-1	m-Dichlorobenzene	ND		ND		nc	10	
95-50-1	o-Dichlorobenzene	ND		ND		nc	10	
106-46-7	p-Dichlorobenzene	ND		ND		nc	10	
156-60-5	trans-1,2-Dichloroethylene	ND		ND		nc	10	
156-59-2	cis-1,2-Dichloroethylene	ND		ND		nc	10	
	•							

* = Outside of Control Limits.

Duplicate Summary Job Number: JC94420

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm ver, VA	ent & Energy				
Sample JC94420-2DUP JC94420-2	File ID 1B120864.D 1B120861.D	DF 1 1	Analyzed 09/10/19 09/10/19	By BK BK	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V1B5843 V1B5843

The QC reported here applies to the following samples:

JC94420-1, JC94420-2, JC94420-3

		JC94420-2		DUP			
CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits
10061-01-5	cis-1,3-Dichloropropene	ND		ND		nc	10
10061-02-6	trans-1,3-Dichloropropene	ND		ND		nc	10
100-41-4	Ethylbenzene	ND		ND		nc	10
87-68-3	Hexachlorobutadiene	ND		ND		nc	10
591-78-6	2-Hexanone	ND		ND		nc	10
98-82-8	Isopropylbenzene	ND		ND		nc	10
99-87-6	p-Isopropyltoluene	ND		ND		nc	10
75-09-2	Methylene chloride	ND		ND		nc	10
1634-04-4	Methyl Tert Butyl Ether	ND		ND		nc	10
108-10-1	4-Methyl-2-pentanone	ND		ND		nc	10
91-20-3	Naphthalene	ND		ND		nc	10
103-65-1	n-Propylbenzene	ND		ND		nc	10
100-42-5	Styrene	ND		ND		nc	10
630-20-6	1,1,1,2-Tetrachloroethane	ND		ND		nc	10
71-55-6	1,1,1-Trichloroethane	0.25	J	0.27	J	8	10
79-34-5	1,1,2,2-Tetrachloroethane	ND		ND		nc	10
79-00-5	1,1,2-Trichloroethane	ND		ND		nc	10
87-61-6	1,2,3-Trichlorobenzene	ND		ND		nc	10
96-18-4	1,2,3-Trichloropropane	ND		ND		nc	10
120-82-1	1,2,4-Trichlorobenzene	ND		ND		nc	10
95-63-6	1,2,4-Trimethylbenzene	ND		ND		nc	10
108-67-8	1,3,5-Trimethylbenzene	ND		ND		nc	10
127-18-4	Tetrachloroethylene	ND		ND		nc	10
108-88-3	Toluene	ND		ND		nc	10
79-01-6	Trichloroethylene	ND		ND		nc	10
75-69-4	Trichlorofluoromethane	ND		ND		nc	10
75-01-4	Vinvl chloride	ND		ND		nc	10
	m.p-Xvlene	ND		ND		nc	10
95-47-6	o-Xvlene	ND		ND		nc	10
1330-20-7	Xvlenes (total)	ND		ND		nc	10
CAS No.	Surrogate Recoveries	DUP		JC94420	-2	Limits	
2199-69-1	1,2-Dichlorobenzene-d4	98 %		95%		70-130%	
460-00-4	4-Bromofluorobenzene	90%		87 %		70-130%	6

* = Outside of Control Limits.

Method: EPA 524.2 REV 4.1

5.5.1 **5**

Duplicate Summary Job Number: JC94420

Account: Project:	ESCVAR WSP E Kop-Flex, Hanov	Environm ver, VA	ent & Energy				
Sample JC94420-2DUP JC94420-2	File ID 1B120864.D 1B120861.D	DF 1 1	Analyzed 09/10/19 09/10/19	By BK BK	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V1B5843 V1B5843
The QC report	ed here applies to	the follo	· · · · · · · · · · · · · · · · · · ·	Method: EPA 5	24.2 REV 4.1		

JC94420-1, JC94420-2, JC94420-3

(a) Outside control limits due to vial differences.

* = Outside of Control Limits.

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V1B5833-BFBLab File ID:1B120680.DInstrument ID:GCMS1B		Injection Date: 08/28/19 Injection Time: 08:16					
m/e	Ion A	bundance Criteria	Raw Abundance	% Relativ Abundan	ve ce	Pass/Fail	
50	14.99	- 40.0% of mass 95	3560	18.7		Pass	
75	30.0 -	80.0% of mass 95	9191	48.4		Pass	
95	Base p	eak, 100% relative abundance	18987	100.0		Pass	
96	5.0 - 9	0.0% of mass 95	1311	6.90		Pass	
173	Less t	han 2.0% of mass 174	0	0.00	(0.00) a	Pass	
174	50.0 -	120.0% of mass 95	15820	83.3	. ,	Pass	
175	5.0 - 9	0.0% of mass 174	1151	6.06	(7.28) ^a	Pass	
176	95.0 -	101.0% of mass 174	15180	79.9	(96.0) a	Pass	
177	5.0 - 9	0.0% of mass 176	967	5.09	(6.37) ^b	Pass	

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1B5833-IC5833	1B120681.D	08/28/19	09:46	01:30	Initial cal 0.2
V1B5833-IC5833	1B120682.D	08/28/19	10:18	02:02	Initial cal 0.5
V1B5833-IC5833	1B120683.D	08/28/19	10:49	02:33	Initial cal 1
V1B5833-IC5833	1B120684.D	08/28/19	11:20	03:04	Initial cal 2
V1B5833-IC5833	1B120685.D	08/28/19	11:51	03:35	Initial cal 5
V1B5833-ICC5833	1B120686.D	08/28/19	12:22	04:06	Initial cal 10
V1B5833-IC5833	1B120687.D	08/28/19	13:42	05:26	Initial cal 20
V1B5833-IC5833	1B120688.D	08/28/19	14:12	05:56	Initial cal 40
V1B5833-IC5833	1B120689.D	08/28/19	14:44	06:28	Initial cal 80
V1B5833-ICV5833	1B120691.D	08/28/19	15:49	07:33	Initial cal verification 10

G

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V1B5843-BFBLab File ID:1B120853.DInstrument ID:GCMS1B		Injection Date: 09/10/19 Injection Time: 09:06					
m/e	n/e Ion Abundance Criteria		Raw Abundance	% Relati e Abunda	ive nce	Pass/Fail	
50	14.99	- 40.0% of mass 95	2583	17.8		Pass	
75	30.0 -	80.0% of mass 95	6953	47.9		Pass	
95	Base p	eak, 100% relative abundance	14513	100.0		Pass	
96	5.0 - 9	0.0% of mass 95	1014	6.99		Pass	
173	Less t	han 2.0% of mass 174	0	0.00	(0.00) a	Pass	
174	50.0 -	120.0% of mass 95	12283	84.6	. ,	Pass	
175	5.0 - 9	0.0% of mass 174	901	6.21	(7.34) ^a	Pass	
176	95.0 -	101.0% of mass 174	11756	81.0	(95.7) a	Pass	
177	5.0 - 9	0.0% of mass 176	832	5.73	(7.08) ^b	Pass	

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
V1B5843-CC5833	1B120854.D	09/10/19	09:47	00:41	Continuing cal 10
V1B5843-BS	1B120855.D	09/10/19	10:25	01:19	Blank Spike
V1B5843-MB	1B120856.D	09/10/19	11:06	02:00	Method Blank
ZZZZZZ	1B120857.D	09/10/19	11:37	02:31	(unrelated sample)
ZZZZZZ	1B120858.D	09/10/19	12:08	03:02	(unrelated sample)
ZZZZZZ	1B120859.D	09/10/19	12:40	03:34	(unrelated sample)
JC94420-1	1B120860.D	09/10/19	13:11	04:05	RW-12270CM-090419-F
JC94420-2	1B120861.D	09/10/19	13:42	04:36	RW-12270CM-090419-
JC94579-1	1B120862.D	09/10/19	14:13	05:07	(used for QC only; not part of job JC94420)
JC94420-2DUP	1B120864.D	09/10/19	15:15	06:09	Duplicate
JC94420-3	1B120865.D	09/10/19	15:47	06:41	TB-090419
ZZZZZZ	1B120866.D	09/10/19	16:18	07:12	(unrelated sample)
JC94579-1MS	1B120867.D	09/10/19	16:49	07:43	Matrix Spike
ZZZZZZ	1B120868.D	09/10/19	17:19	08:13	(unrelated sample)
ZZZZZZ	1B120869.D	09/10/19	17:50	08:44	(unrelated sample)
ZZZZZZ	1B120870.D	09/10/19	18:21	09:15	(unrelated sample)
ZZZZZZ	1B120871.D	09/10/19	18:53	09:47	(unrelated sample)
ZZZZZZ	1B120872.D	09/10/19	19:24	10:18	(unrelated sample)

(J)

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V3A6923-BFBLab File ID:3A160428.DInstrument ID:GCMS3A		Injection Date: 07/18/18 Injection Time: 16:55					
m/e	Ion Abundance (Criteria		Raw Abundance	% Relative Abundanc	e e	Pass/Fail
50 75	15.0 - 40.0% of r	nass 95		25408	20.8		Pass
75 95	30.0 - 60.0% of f Base neak 100%	nass 95 relative abundance		62880 121864	51.6 100 0		Pass Pass
96	5.0 - 9.0% of ma	is 95		8101	6.65		Pass
173	Less than 2.0% o	f mass 174		826	0.68	(0.81) a	Pass
174	50.0 - 120.0% of	mass 95		102317	84.0		Pass
175	5.0 - 9.0% of ma	ss 174		8168	6.70	(7.98) ^a	Pass
176	95.0 - 101.0% of	mass 174		100370	82.4	(98.1) ^a	Pass
177	5.0 - 9.0% of ma	ss 176		6691	5.49	(6.67) ^b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V3A6923-IC6923	3A160429.D	07/18/18	17:26	00:31	Initial cal 0.25
V3A6923-IC6923	3A160430.D	07/18/18	17:52	00:57	Initial cal 0.4
V3A6923-IC6923	3A160431.D	07/18/18	18:18	01:23	Initial cal 1
V3A6923-IC6923	3A160432.D	07/18/18	18:43	01:48	Initial cal 2
V3A6923-IC6923	3A160433.D	07/18/18	19:09	02:14	Initial cal 5
V3A6923-ICC6923	3A160434.D	07/18/18	19:35	02:40	Initial cal 20
V3A6923-IC6923	3A160435.D	07/18/18	20:00	03:05	Initial cal 50
V3A6923-IC6923	3A160436.D	07/18/18	20:26	03:31	Initial cal 100
V3A6923-IC6923	3A160437.D	07/18/18	20:52	03:57	Initial cal 200
V3A6923-ICV6923	3A160443.D	07/18/18	23:25	06:30	Initial cal verification 20

S

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Sample:V3A7059-BFBLab File ID:3A162941.DInstrument ID:GCMS3A		Injection Date: 09/11/19 Injection Time: 07:33					
m/e	Ion Ab	undance Criteria		Raw Abundance	% Relativ Abundan	re ce	Pass/Fail
50	15.0 - 4	0.0% of mass 95		20125	20.1		Pass
75	30.0 - 6	0.0% of mass 95		50768	50.8		Pass
95	Base pe	ak, 100% relative abundance		99880	100.0		Pass
96	5.0 - 9.	0% of mass 95		6629	6.64		Pass
173	Less the	an 2.0% of mass 174		0	0.00	(0.00) ^a	Pass
174	50.0 - 1	20.0% of mass 95		69194	69.3		Pass
175	5.0 - 9.	0% of mass 174		5438	5.44	(7.86) ^a	Pass
176	95.0 - 1	01.0% of mass 174		67768	67.8	(97.9) a	Pass
177	5.0 - 9.	0% of mass 176		4632	4.64	(6.84) ^b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V3A7059-CC6993	3A162943 D	09/11/19	08.56	01.93	Continuing cal 5
V3A7059-BS	3A162944 D	09/11/19	09.25	01.23	Blank Snike
V3A7059-MB	3A162945 D	09/11/19	09.23	01.02	Method Blank
IC94534-1	3A162946 D	09/11/19	10.26	02:53	(used for QC only: not part of job IC94420)
777777	3A162947 D	09/11/19	10:20	02:00	(unrelated sample)
777777	3A162948 D	09/11/19	11:25	03:52	(unrelated sample)
IC94534-1MS	3A162949 D	09/11/19	11.20	04.21	Matrix Snike
JC94534-1MSD	3A162950 D	09/11/19	12:23	04:50	Matrix Spike Duplicate
777777	3A162952 D	09/11/19	13:20	05:47	(unrelated sample)
777777	3A162953 D	09/11/19	13:49	06:16	(unrelated sample)
IC94420-3	3A162954 D	09/11/19	14:18	06:45	TB-090419
JC94420-1	3A162955.D	09/11/19	14:47	07:14	RW-12270CM-090419-F
JC94420-2	3A162956.D	09/11/19	15:16	07:43	RW-12270CM-090419-
777777	3A162957.D	09/11/19	15:44	08:11	(unrelated sample)
7.7.7.7.7.	3A162958.D	09/11/19	16:13	08:40	(unrelated sample)
777777	3A162959 D	09/11/19	16:42	09:09	(unrelated sample)
777777	3A162960 D	09/11/19	17:12	09:39	(unrelated sample)
ZZZZZZ	3A162961.D	09/11/19	17:41	10:08	(unrelated sample)

5.6.4

G

Surrogate Recovery Summary

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Method: EPA 524.2 REV 4.1

Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab		
Sample ID	File ID	S1	S2
JC94420-1	1B120860.D	98	90
JC94420-2	1B120861.D	95	87
JC94420-3	1B120865.D	102	90
JC94420-2DUP	1B120864.D	98	90
JC94579-1MS	1B120867.D	105	93
V1B5843-BS	1B120855.D	108	97
V1B5843-MB	1B120856.D	100	90
Surrogate		Recove	ery
Compounds	Limits		
S1 = 1, 2-Dichlor	70-130	%	
S2 = 4-Bromoflu	70-130	%	

Page 1 of 1

Surrogate Recovery Summary

Job Number:	JC94420
Account:	ESCVAR WSP Environment & Energy
Project:	Kop-Flex, Hanover, VA

Method: SW846 8260C BY SIM

Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab	61
Sample ID	File ID	S 1
JC94420-1	3A162955.D	94
JC94420-2	3A162956.D	95
JC94420-3	3A162954.D	98
JC94534-1MS	3A162949.D	104
JC94534-1MSD	3A162950.D	97
V3A7059-BS	3A162944.D	104
V3A7059-MB	3A162945.D	113
Surrogate		Recoverv
Compounds	Limits	
S1 = 1, 4-Dioxan	25-195%	

Page 1 of 1

5.7.2 **5**

ENCLOSURE B – WELL ABANDONMENT REPORTS

August 23, 2019

Brian Chew Supervisor, Well Construction and Groundwater Quality Program Anne Arundel County Health Department 3 Harry S. Truman Pkwy. Annapolis, MD 21401

Re: Well Abandonment Reports

Dear Mr. Chew:

Enclosed please find 2 completed Water Well Abandonment-Sealing Report Forms and two well tags for a site on Fairbanks Drive.

If you have any questions or need any additional information, please do not hesitate to contact me at 304-724-6458 or csealander@a-zoneenvironmental.com.

Sincerely,

Chilson J. Sulenn

Christina J. Sealander Office Manager

WWW.A-ZONEENVIRONMENTAL.COM P 304.724.6458 F 304.724.6459 2181 Berryville Pike | Charles Town, WV 25414

MARYLAND DEPARTMENT OF THE ENVIRONMENT, WATER MANAGEMENT ADMINISTRATION 1800 Washington Blvd., Baltimore, Maryland 21230 (410) 537-3784 WATER WELL ABANDONMENT-SEALING REPORT FORM MW-28B SUBMIT COPIES OF COMPLETED FORM TO: COUNTY ENVIRONMENTAL AGENCY (contact MDE, WMA if address needed) WELL OWNER MDE, WATER MANAGEMENT ADMINISTRATION, WELL PROGRAM DATE WELL ABANDONED: (month/day/year) - 13-068 PERMIT NUMBER OF ABANDONED WELL (if any) PERMIT NUMBER OF REPLACEMENT WELL: 1 OCAO WELL DRILLER'S LICENSE NUMBER: 106 PERSON ABANDONING WELL: CIRCLE: MWD / MSD / MGD OWNER'S NAME: SITE LOCATION MAP WELL LOCATION: COUNTY: NEAREST TOWN: PARCEL TAX MAP BLOCK airbanks DR SUBDIVISION: LOT: SECTION: DR STREET ADDRESS: Fairba LATITUDE 39.139 85 LONGITUDE 7 (1.698855 LOG OF SEALING MATERIAL FEET MATERIAL FROM TO Proflem Cemer TYPE OF WELL BEING ABANDONED: DRILLED **JETTED** BORED HAND DUG OTHER (specify) **USE CODE:** MUNICIPAL/PUBLIC DOMESTIC INDUSTRIAL IRRIGATION **TEST/OBSERVATION GEOTHERMAL** VOLUME OF MATERIAL USED TYPE OF CASING: Gal PLASTIC STEEL CONCRETE OTHER (specify) Pursuant to § 10-624 of the State Govt. Article of the Maryland Code, personal info requested on this form is used in processing this form pursuant to COMAR 26.04.04. Failure to provide the info may result in SIZE OF CASING: 2, 5 this form not being processed. You have the right to INCHES IN DIAMETER inspect, amend, or correct this form. The Maryland Department of the Environment is subject to the Maryland Public Information Act. This form may be DEPTH OF WELL: FEET DEEP made available on the Internet via MDE's website and WAS ANY CASING REMOVED? YES is subject to inspection or copying, in whole or in part, NO by the public and other governmental agencies, if not protected by federal or State Law. If yes, length removed, in feet: 45 WAS CASING BIPPED OR PERFORATED? NO M60106 MWD MSD / MGS SIGNATORE-MASTER WELL DRILLER OR SUPERVISING SANITARIAN LICENSE# CIRCLE ONE ORIGINAL

MARYLAND DEPARTMENT OF THE ENVIRONMENT, WATER MANAGEMENT ADMINISTRATION 1800 Washington Blvd., Baltimore, Maryland 21230 (410) 537-3784 WATER WELL ABANDONMENT-SEALING REPORT FORM MW-25C SUBMIT COPIES OF COMPLETED FORM TO: COUNTY ENVIRONMENTAL AGENCY (contact MDE, WMA if address needed) WELL OWNER MDE, WATER MANAGEMENT ADMINISTRATION, WELL PROGRAM - (0 -DATE WELL ABANDONED: (month/day/year) -13 -PERMIT NUMBER OF ABANDONED WELL (if any) PERMIT NUMBER OF REPLACEMENT WELL: psp MOYGUM WELL DRILLER'S LICENSE NUMBER: PERSON ABANDONING WELL CIRCLE: MWD / MSD / MGI OWNER'S NAME: NP SITE LOCATION MAP WELL LOCATION: ne COUNTY: Hanover NEAREST TOWN: TAX MAP BLOCK PARCEL SUBDIVISION: LOT: SECTION: STREET ADDRESS: den LATITUDE 3 LONGITUDE 7 6. 698633 LOG OF SEALING MATERIAL FEET MATERIAL FROM TO TYPE OF WELL BEING ABANDONED: DRILLED **JETTED** BORED HAND DUG OTHER (specify) USE CODE: MUNICIPAL/PUBLIC DOMESTIC IRRIGATION **INDUSTRIAL TEST/OBSERVATION GEOTHERMAL** VOLUME OF MATERIAL USED TYPE OF CASING: PLASTIC STEEL CONCRETE OTHER (specify) Pursuant to § 10-624 of the State Govt. Article of the Maryland Code, personal info requested on this form is used in processing this form pursuant to COMAR 26.04.04. Failure to provide the info may result in this form not being processed. You have the right to inspect, amend, or correct this form. The Maryland SIZE OF CASING: INCHES IN DIAMETER Department of the Environment is subject to the Maryland Public Information Act. This form may be DEPTH OF WELL: FEET DEEP made available on the Internet via MDE's website and WAS ANY CASING REMOVED? is subject to inspection or copying, in whole or in part, YES NO by the public and other governmental agencies, if not protected by federal or State Law. If yes, length removed, in feet: WAS CASING RIPPED OR PERFORATED? YES NO MGD106 D/ MSD/ MGS SIGNATURE-MASTER WELL DRILLER OR SUPERVISING SANITARIAN LICENSE# CIRCLE ONE ORIGINAL

ENCLOSURE C – ¹⁴C ASSAY METHOD FOR DETERMINING CONSTITUENT DEGRADATION RATES IN GROUNDWATER

Quantification of TCE Co–Oxidation in Groundwater Using a ¹⁴C–Assay

by James C. Mills IV, John T. Wilson, Barbara H. Wilson, Todd H. Wiedemeier, and David L. Freedman

Abstract

Bacteria that degrade natural organic matter in groundwater contain oxygenase enzymes that can co-oxidize trichloroethene (TCE). This degradation pathway is promising for large dilute plumes, but its evaluation is limited because the density of the bacteria with oxygenase enzymes has not been correlated to field scale rates of degradation. A ¹⁴C–TCE assay was developed to determine pseudo first-order rate constants for the aerobic co-oxidation of TCE in groundwater. The assay involved incubating ¹⁴C–TCE in samples of groundwater contained in 160 mL serum bottles, and monitoring the accumulation of radiolabel in degradation products. A first-order rate constant for co-oxidation was extracted from the rate of accumulation of ¹⁴C in products, accounting for volumetric changes in the serum bottles due to sampling and subsequent changes to the distribution of TCE between the aqueous and gaseous phases. Of the groundwater samples evaluated from 19 wells at five sites, eight samples at three sites had ¹⁴C product accumulation rates that exceeded the accumulation rate in filter-sterilized groundwater controls. First-order rate constants ranged from 2.65 to 0.0066 year⁻¹, which is equivalent to half-lives of 0.26 to 105 years. Groundwater samples from a few of the wells in which co-oxidation occurred had volatile organic contaminants in addition to TCE; their presence may have induced the oxygenase enzymes that are needed for TCE co-oxidation. ¹⁴CO₂ represented ~37% to 97% of the ¹⁴C products that accumulated; the balance of the products was soluble and non-volatile.

Introduction

Monitored natural attenuation (MNA) is a remediation strategy that considers the total contributions of natural biotic and abiotic processes, such as biodegradation, sorption, dilution, and volatilization, among others, that lead to contaminant remediation over time (Wiedemeier et al. 1999). Biodegradation is a key component of MNA that relies on indigenous microbes capable of degrading contaminants, including chlorinated solvents, without active engineering intervention (National Research Council 2000; Illman and Alvarez 2009). Trichloroethene (TCE) is a chlorinated solvent of interest because of human health issues, prevalence of contamination, and regulation of TCE contaminated sites (Alvarez and Illman 2006; Löffler et al. 2013). TCE biodegradation occurs through anaerobic reductive dechlorination or aerobic co-oxidation pathways (Arp 1995). Methods to document the rate of in-situ reductive dechlorination of TCE, as well as the quantity of microbes and enzymes involved, are well established (Sherwood Lollar et al. 2000; Bradley 2003; Morrill et al. 2005; Alvarez and Illman 2006; Ritalahti et al. 2006; Illman and Alvarez 2009; Löffler et al. 2013). Nevertheless, methods to measure the rate of in-situ co-oxidation are less well developed. One approach relies on changes in TCE concentrations along a flowpath (Sturchio et al. 1998; Sorenson et al. 2000;

© 2018, National Ground Water Association doi: 10.1111/gwmr.12266

Kirtland et al. 2003). However, this method is restricted to sites with concentrations that are high enough to accurately quantify changes; the flowpath is well defined; and/or tracers are present that permit adjustments for dispersion and adsorption. The need exists for methods to estimate in-situ rates of co-oxidation that are applicable to sites that are not as well characterized.

Aerobic co-oxidation of TCE is mediated by many (but not all) mono- and dioxygenase enzymes (http://eawag-bbd. ethz.ch/tce/tce_map.html). Growth on a wide variety of substrates induces expression of oxygenases, including many aromatics, alkanes, and alkenes (Alvarez-Cohen and Speitel Jr 2001). Reaction of TCE with oxygenases results in a variety of products, including CO, CO₂, formate, glyoxylate, dichloroacetate, and oxalate (Arp et al. 2001). However, unlike the products of reductive dechlorination, these are not unique to TCE degradation and therefore it is not possible to demonstrate the rate and occurrence of co-oxidation by measuring these compounds in-situ.

MNA requires rigorous documentation to provide evidence that the contaminants are degrading to regulatory limits. The Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response Directive 9200.4-17 identified three lines of evidence to demonstrate MNA, including historical groundwater and/or soil chemistry data (primary), hydrogeological and geochemical data (secondary), and field or microcosm studies (tertiary) (EPA 1999). Tools exist that can assist in providing tertiary evidence for MNA to document the aerobic co-oxidation of TCE. Molecular tools to document the presence of oxygenases capable of degrading TCE are commercially available, including qPCR assays for soluble methane monooxygenase, ring hydroxylating toluene monooxygenase, and ethene monooxygenase (Baldwin et al. 2003; Paszczynski et al. 2011; Wiedemeier et al. 2017). It is also possible to test for the expression of these enzymes by quantification of the associated mRNA. Enzyme activity probes (EAPs) are also available to quantify the presence of oxygenase enzymes. EAPs serve as alternate substrates for TCE cometabolizing enzymes. An assay has been developed for four aromatic oxygenases (Keener et al. 1998, 2001; Miller et al. 2002; Clingenpeel et al. 2005), and soluble methane monooxygenase (Miller et al. 2002). The non-fluorescent EAPs are transformed by the enzymes into a quantifiable fluorescent signal upon reaction, thus providing direct evidence of cometabolic enzyme activity.

While quantifying the presence of enzymes capable of cooxidation is important, it is not sufficient to conclusively establish that biodegradation is occurring, and if so, at what rate. Application of MNA to large, dilute plumes of TCE has been limited because the numbers of bacteria in groundwater that have the oxygenase enzymes has not been directly correlated to field scale rates of degradation (Wiedemeier et al. 2017). Because determining field scale rates for co-oxidation of TCE using concentration data is problematic (Wiedemeier et al. 2017), a more robust method of measuring rates is needed. The objective of this research was to develop an assay based on use of ¹⁴C-labeled TCE. Quantification of biodegradation using ¹⁴C-labeled compounds has been in use for decades, and numerous studies have employed ¹⁴C-TCE. Nevertheless, an assay specifically targeting co-oxidation of TCE at low concentrations is needed to determine the low rates of degradation that may occur in dilute plumes. The assay developed in this study was applied to groundwater samples from five contaminated sites in the US. By measuring the accumulation of ¹⁴C-labeled products from ¹⁴C-TCE co-oxidation in the laboratory, it was possible to measure first-order rate constants that equate to half-lives in excess of 50 years.

Materials and Methods

Site Locations and Sample Collection

Groundwater samples were collected from five sites known to have TCE contamination: the former Twin Cities Army Ammunition Plant (TCAAP) in Shoreview, Minnesota; the former Plattsburgh Air Force Base (AFB) in Plattsburgh, New York; the former Hopewell Precision facility in Hopewell Junction, New York; the Tooele Army Depot near Tooele, Utah; and Hill AFB near Ogden, Utah. Additional site information and characterization is available in Wiedemeier et al. (2016, 2017). Details on TCE concentrations and the presence of other volatile organic compounds (VOCs) at the sites are presented in Appendix S1, Supporting Information.

Groundwater samples were obtained from 19 wells. At four of the sites, four wells were sampled; at Hill AFB, it was feasible to sample only three wells. Triplicate samples (100 mL) were collected from each well in sterile 160 mL borosilicate glass serum bottles (Wheaton®, Millville, New Jersey) and immediately sealed with polytetrafluoroethylene (PTFE)-faced gray butyl rubber septa (Sun-SriTM, Rockwood, Tennessee; 20 mm, 0.130 butyl) and aluminum crimp caps. The bottles were labeled and weighted $(\pm 0.01 \text{ g})$ before field sample collection. Additional groundwater was collected from each well to be used for preparing filter-sterilized controls (see below). Samples were shipped overnight on ice to Clemson University.

Chemicals

 $^{14}\text{C}\text{-}\text{TCE}$ (1.0 mCi) was custom-synthesized by Moravek Biochemicals, Inc. (Brea, California) and dissolved in acetonitrile. The specific activity was 60.2 mCi/mmol and the reported radiochemical purity was 97.2%. A stock solution was prepared in a clear 65 mL bottle by adding the $^{14}\text{C}\text{-}\text{TCE}/$ acetonitrile solution to ~60 mL of TCE (ACS grade) saturated distilled deionized (DDI) water (~8.6 µmol TCE/mL), in order to reduce the specific activity of the $^{14}\text{C}\text{-}\text{TCE}$ and minimize radiolysis of the TCE to produce radio-labeled degradation products. The bottle was sealed with a Mininert valve and stored at 10 °C.

ScintiSafe[™] Plus 50% Cocktail (Fisher Scientific, Pittsburgh, Pennsylvania) was used in liquid scintillation counting. NaOH (ACS grade) pellets were obtained from VWR (Randor, Pennsylvania). Barium hydroxide octahydrate (97%) was obtained from Alfa Aesar. Additional details on preparation of the ¹⁴C–TCE stock solution and chemicals used are found in Appendix S2.

¹⁴C–TCE Purification and Addition

To facilitate detection of low levels of ¹⁴C-labeled TCE degradation products, it was necessary to remove 14C-labeled impurities before adding it to the serum bottles. The label in the impurities would count along with the TCE transformation product in the assay and create a high background. The bacteria that express oxygenase enzymes might be affected by the acetonitrile in the stock solution. Gas chromatography (HP 5890 Series II) was used for this purpose (Darlington et al. 2008). An aliquot of the stock solution $(50 \,\mu\text{L})$ was injected onto a stainless-steel column packed with 1% SP-1000 on 60/80 Carbopack-B (Supelco). The end of the column was connected to a four-port valve in the gas chromatograph (GC) oven. The valve was positioned so that the flow exited the oven through stainless-steel tubing rather than routing to the flame ionization detector (FID). The tubing terminated with a sterile needle, through which the purified ¹⁴C-TCE was injected at a predetermined residence time into the serum bottles (Appendix S3). Prior to injecting the purified ¹⁴C-TCE, 50 mL of headspace was withdrawn with a gas-tight syringe to compensate for the gas being added, so that the headspace was not over pressurized.

High-purity N₂ served as the carrier gas (33.5 mL/min). The temperature program was 60 °C for 2 min, increase at 20 °C/min to 150 °C, increase at 10 to 200 °C and hold for 28.5 min. The elution time for TCE was 9.6 to 11.1 min. The extended hold time at 200 °C was designed to ensure that impurities did not accumulate on the column. The average amount of ¹⁴C–TCE added to the serum bottles was $0.382\pm0.021\,\mu$ Ci. The amount gradually decreased over approximately 4 months of testing, likely due to diffusive losses from the stock solution.

The use of a second column in series with the first was tested to determine if additional purification was achievable. However, the single and dual column approaches were equivalent. Appendix S4 provides further details on removal of impurities during addition of ¹⁴C–TCE to groundwater samples.

Time Zero Preparations and Measurements

Immediately upon receipt at Clemson University, the bottles were warmed to room temperature $(22\pm2 \,^{\circ}C)$, quiescently in the dark, for approximately 24h before addition of ¹⁴C–TCE. The mass of bottles was recorded (±0.01 g) to determine the amount of water in each bottle. Groundwater samples were collected in triplicate serum bottles from each well. For each site, two wells were sampled per day, on consecutive days. When the first set of samples was prepared, triplicate DDI water controls were also prepared. During subsequent testing, it became apparent that filter-sterilized groundwater (FSGW) was a better indicator of background activity; 0.2 µm, 47 mm filters (WhatmanTM; Millipore Sigma, St. Louis, Missouri) were used to prepare the FSGW controls.

After adding gas containing the purified ¹⁴C–TCE to the headspace, the bottles were immediately inverted to reduce diffusional losses and placed on an orbital shaker table (98±2 RPM) for approximately 1 h to facilitate establishment of equilibrium between the headspace and liquid phases. Headspace samples were then evaluated for VOCs and oxygen. Addition of ¹⁴C–TCE resulted in an average time zero TCE level of $0.262\pm0.031\,\mu$ mol per bottle, or an aqueous phase concentration of $282\pm0.034\,\mu$ g/L when taking into account partitioning between the headspace and liquid phases (Gossett 1987).

Time zero monitoring for ¹⁴C involved direct headspace and liquid counts. Direct sample counts were used to quantify the total amount of radioactive material in each bottle. Headspace samples (0.5 mL gas) were removed using a gas-tight syringe. Samples (0.5 mL gas, 0.1 mL liquid) were injected immediately into 20 mL borosilicate glass scintillation vials (FisherbrandTM; Fisher Scientific) each containing 15 mL of liquid scintillation cocktail (LSC). A hole (2.38 mm) was drilled in the polypropylene scintillation cap and a PTFEfaced gray butyl rubber septum was placed inside the cap to minimize any losses of ¹⁴C from volatilization. The total amount of ¹⁴C present per bottle was determined (based on disintegrations per minute [dpm]) using the equation:

$$C_{tot,o} = \frac{S_l}{V_{l,s}} \cdot V_{l,b} + \frac{S_h}{V_{g,s}} \cdot V_{g,b}$$
(1)

where $C_{tot,o}$ = total ¹⁴C in a serum bottle at the beginning of the assay (dpm/bottle); $S_l = {}^{14}$ C in liquid sample (dpm/ sample); $V_{l,s}$ = volume of liquid sample (typically 0.1 mL); and $V_{l,b}$ = initial volume of liquid in a serum bottle (~100 mL); $S_h = {}^{14}$ C in a headspace sample (dpm/sample); $V_{g,s}$ = volume of headspace sample (typically 0.5 mL); $V_{g,b}$ = volume of headspace in a serum bottle (160 mL - $V_{l,b}$).

To determine the accumulation of radio-labeled degradation products, a sample of water was collected from the serum bottle and the ^{14}C -TCE was sparged out of the sample with a stream of N_2 . Sparging removed VOCs, principally ¹⁴C–TCE, so that any radioactivity remaining in the vial consisted of non-volatile transformation products and not residual ¹⁴C–TCE. Then scintillation counting was used to determine the accumulation of transformation products in the sparged sample.

Prior to removing a liquid sample from a serum bottle for sparging, approximately 3 mL of room air was injected. The liquid sample (3.0 mL) was then withdrawn and added to a scintillation vial. Approximately 12 µL of 8 M NaOH was added to raise the pH above 10.5, thereby ensuring retention of ¹⁴CO₂ in the aqueous phase as carbonate. The pH of the sample was confirmed qualitatively using a pH strip (BDH® VWR Analytical, pH 7.0-14.0, gradation of 0.5 units; VWR). The alkaline liquid sample was sparged with N_{2} (550±50 mL/min) for 30 min. The adequacy of this approach to remove ¹⁴C-TCE was confirmed (Appendix S5). The vials were tilted on a 30° angle to facilitate contact between the N₂ and liquid. Following sparging, 15 mL of LSC was added to the vials, which were then incubated quiescently in the dark at room temperature for approximately 24 h before counting.

Monitoring and ¹⁴C Product Distribution

Samples were removed seven or eight times over a period of 40 to 46 days. At each sampling event, headspace and liquid samples were counted to determine the total ¹⁴C remaining and a headspace sample was used to measure O_2 . Accumulation of ¹⁴C labeled product in the aqueous phase was determined in 3.0 mL liquid samples, as described above. An overview of the sampling sequence is provided in Appendix S6.

On the final day of incubation, routine measurements were made (i.e., ¹⁴C remaining in the headspace and liquid, O₂ in the headspace, and ¹⁴C products in a 3.0 mL liquid sample). VOCs in the headspace were also analyzed. If the accumulation of ¹⁴C products relative to the DDI or FSGW controls was statistically significant at 95% confidence, the distribution of products was evaluated for CO₂ and soluble, non-strippable residue (NSR). The amount of ¹⁴CO₂ was obtained by precipitation of radiolabel from the alkaline sparge water with barium hydroxide. To do so, a 10-mL sample of water from the serum bottle was added to a 15-mL sterile, polypropylene centrifuge tube (VWR®). Approximately 50 µL of 8 M NaOH was injected to raise the pH above 10.5. The samples were sparged with N_{2} (550±50mL/min) for approximately 30min, then 3.0 mL of the alkaline solution was withdrawn and added to 15 mL of LSC; this replicated the analysis performed with only a 3.0 mL liquid sample. Next, 1.35 g of Ba(OH), 8H,O was added to the remaining 7.0 mL of the sparged, alkaline liquid in the centrifuge tubes and vigorously mixed using a constant speed vortex mixer. The tubes were centrifuged for 20 min (2700 rpm). An aliquot of the centrate (2.0 mL), that is, the water remaining in the centrifuge tube, was withdrawn and added to 15 mL of LSC. The LSC vials were incubated quiescently in the dark for approximately 24h before counting. The centrate was presumed to contain ¹⁴C products other than ¹⁴CO₂, since ¹⁴CO₂ formed a barium carbonate precipitate. The composition of the soluble products (NSR) was not investigated any further. A second method was used to determine CO_2 and NSR, involving acidic sparging; details and results of this method are found in Appendix S7; a step-by-step procedure is also available (Mills IV 2017).

Analysis of VOCs and Oxygen

The total amount of TCE present in a serum bottle was quantified by injection of a headspace sample (0.5 mL) onto a GC (HP 5890 Series II) equipped with a stainless-steel column packed with 1% SP-1000 on 60/80 Carbopack B (Supelco; Millipore Sigma) and FID (Gossett 1987). Other VOCs present in the groundwater were also detected but were not identified. Acetonitrile, a component of the ¹⁴C-TCE stock solution, was not detected in any of the serum bottles. The absence of acetonitrile was confirmed from day 0 GC chromatograms recorded for every serum bottle. It is important to note that even if acetonitrile was present in the serum bottles following GC purification, there is no evidence in the literature that suggests acetonitrile can serve as a primary substrate for TCE co-oxidation (Alvarez-Cohen and Speitel Jr 2001). VOCs were checked after the TCE was injected into the bottles, not prior to the addition.

Oxygen was measured in headspace samples (0.5 mL) on a GC equipped with a thermal conductivity detector and a stainless-steel column packed with 100/120 Carbosieve S-II support (Supelco). The flow rate was approximately 50.5 ± 0.2 mL/min with N₂ gas as the carrier and reference gas. An isothermal temperature program (105 °C, 4 min) was used. After 40 to 46 days of incubation, the average O₂ level in the groundwater bottles was $12.0 \pm 0.28\%$; the lowest level observed was 7.50%. This was considered adequate to avoid any limitation on co-oxidation of TCE, and as a result, none of the groundwater bottles received additional O₂. There was no correlation between the occurrence of TCE co-oxidation and oxygen consumption, since oxygen was present in excess of the demand for TCE and other organic compounds.

Positive Controls and Sample Handling Effects

The ¹⁴C assay was validated using water from a seep at the Twin Lakes Recreation Area on Lake Hartwell near Pendleton, SC and a culture of the propanotrophic bacterium ENV487 (courtesy of Dr. Robert Stefan at CB&I, Inc.). ENV487 was used because propanotrophs are known to cometabolize TCE (Chang and Alvarez-Cohen 1995; Frascari et al. 2003). It was grown to a density of ~ 5.3×10^{10} cell/mL on propane gas and oxygen in basal salts medium (BSM), as previously described (Rodriguez 2016). Following growth on propane and oxygen, dilutions (25%, 2.5%, 0.25%, and 0.025%) were prepared with BSM in 160 mL serum bottles and ¹⁴C–TCE was added. Another bottle with only BSM was prepared as a negative control.

The seep at Twin Lakes discharges into an area with a high level of organic debris. It was selected because of its proximity to the laboratory and to evaluate the potential for co-oxidation of TCE in a sample with no known previous contamination by TCE or other chlorinated organic compounds. Samples from the seep area were added to serum bottles and immediately capped in the field using the same methodology described for collection of the groundwater samples. Upon arrival at Clemson University, ¹⁴C–TCE was added. Triplicate DDI water controls were prepared at the same time.

The ENV487 propanotrophic culture was also used to evaluate the effect of sample handling and storage, that is, what was the effect of cooling the samples to 4 °C and storing them for ~20 h prior to measuring the accumulation of ¹⁴C products. Three conditions were used to test the effects of temperature, each in triplicate: (1) ambient room temperature; (2) storage on ice for 24 h, then warming for 2.5 h; and (3) storage on ice for 24 h, then warming for 24 h; the latter most closely resembles how the groundwater samples were handled. ¹⁴C–TCE was added following the respective temperature of ~5.3 × 10¹⁰ cell/mL was selected based on initial results from the positive control test mentioned above. The bottles were monitored for accumulation of ¹⁴C products for 40 days.

First-Order Modeling

The background level of TCE in the groundwater (Appendix S1) plus the TCE added along with ¹⁴C–TCE resulted in an initial TCE concentration (0.282 ± 0.034 mg/L) that was below the half saturation constant (typically >1 mg/L) for a significant number of bacteria that cometabolize TCE (Alvarez-Cohen and Speitel Jr 2001; Wiedemeier et al. 2017). Consequently, first-order kinetics were utilized to represent the rate of TCE degradation. However, the number of cells present in each bottle was not determined and the rate constants developed through this modeling process could not be normalized to the amount of biomass. Therefore, an assumption of the model is that the amount of biomass is at steady-state, which is analogous to pseudo first-order reaction kinetics (Schmidt et al. 1985).

The accumulation of ¹⁴C products over time was used to determine the pseudo first-order rate constant for TCE transformation (k), by fitting experimental data to a mass balance model for ¹⁴C in the microcosms. Rate constants were determined by fitting measured ¹⁴C product accumulation data to the following equation:

$$\Delta C_i = C_{l,i-1,a} - C_{l,i-1,a} \left(e^{-k\Delta t} \right) \tag{2}$$

where ΔC_i =the increase in ¹⁴C products over the *i*th interval between sampling events (*i*=0 to 8 or 9, representing the number of sampling events); $C_{l,i,a}$ =concentration of ¹⁴C products in the aqueous phase after removing the liquid and headspace samples, that is, the beginning of the *i*th interval; and Δt is the time between sampling events. It was assumed that ΔC_i was zero at *i*=0 (i.e., there was no accumulation of ¹⁴C products at time zero).

Rate constants were determined using MATLAB by minimizing the sum of squared errors between the prediction and the ¹⁴C product data over time. Triplicate bottles were fit simultaneously to obtain a single value for k (i.e., as opposed to determining k for each bottle and then taking the average). Calculations were performed in two stages, with the first stage corresponding to the initial conditions and the second stage to all subsequent data points.

The value of k was iterated in the MATLAB script until a minimum value was obtained for the sum of squared errors determined as the squared difference between the experimental and estimated ¹⁴C product values. The MATLAB function used for the iterative approach was *lsqcurvefit*, which is a nonlinear curve-fitting solver function that uses the trust-region-reflective algorithm. Confidence intervals (CI) (95%) were determined using the MATLAB function *nlparci* with the Jacobian matrix and residual vector determined from *lsqcurvefit*. Details and the full set of equations used are in Appendix S8.

A Student's *t*-test was used to determine if the rate constant for a groundwater sample was statistically different from the FSGW control (α =0.05). If it was, a net *k* value was calculated by subtracting the FSGW rate. The CI for the net rate was determined by propagation of error using the standard deviations.

Liquid Scintillation Counting

Beta radiation was quantified using a Wallac 1220 Quantulus (PerkinElmer, Inc, Waltham, Massachusetts) liquid scintillation counter, which is an ultra-low-level spectrometer. The counter was connected to a desktop computer equipped with proprietary WinQ software (PerkinElmer, Inc.). The ¹⁴C (high-energy beta) configuration in WinQ was used and windows 1 and 2 (used to detect beta radiation) were expanded to 5–700 and 1–700, respectively. All samples were counted for 15 min with the external standard quench parameter selected for quench correction. The quench efficiency curve was determined using prepared ¹⁴C standards (Beckman Instruments Inc., Brea, California; quenched carbon-14 standards set) with a counting time of 15 min. Direct headspace and liquid ¹⁴C samples were counted within 3 h of the sampling event. The sparged alkaline liquid samples were incubated quiescently in the dark for approximately 24h before counting to reduce chemilumenscence arising from the high pH of the 3-mL sample mixed with the LSC.

Results and Discussion

Positive Controls

There was a statistically significant rate of ¹⁴C product accumulation in the propanotrophic cultures compared to the BSM controls (Appendix S9). The pseudo first-order rate constant and associated 95% CI for the lowest dilution (0.025%) was $1.77 \times 10^{-1} \pm 3.01 \times 10^{-2}$ year⁻¹, which gives a half-life of 3.9 years (95% CI=3.3 to 4.7 years). There was no statistically significant (α =0.05) increase in ¹⁴C products in the BSM control.

There was a statistically significant (α =0.05) rate of ¹⁴C product accumulation in seep samples from the Twin Lakes Recreation Area, resulting in a pseudo first-order rate constant of $5.00 \times 10^{-2} \pm 1.62 \times 10^{-2}$ year⁻¹. There was also a statistically significant (α =0.05) increase in the DDI water controls (filter-sterilized controls were not run), at a pseudo first-order rate of $2.61 \times 10^{-2} \pm 5.86 \times 10^{-3}$ year⁻¹. The net rate was $2.39 \times 10^{-2} \pm 1.67 \times 10^{-2}$ year⁻¹, yielding a half-life of 29 years (95% CI=17 to 96 years). These results confirmed that the assay can detect co-oxidation rates that are meaningful in the context of MNA.

The effect of storage conditions on the rate of ¹⁴C product accumulation was evaluated (Appendix S10). There was no significant difference in rates for the treatment that was never cooled to 4 °C and the treatment that was held at 4 °C for 2.5 h before being warmed to room temperature. The treatment that was held at 4 °C for 24h before being warmed to room temperature behaved differently; this was most pronounced after day 4, as the ¹⁴C product accumulation rate slowed noticeably. However, when only the first 5 days of data were considered, there were no statistically significant (α =0.05) differences among the first-order rate constants.

These results suggest that the conditions under which the groundwater samples were handled (i.e., shipment and storage on ice overnight, followed by warming to room temperature overnight) may have decreased the reaction rate. Consequently, the rates reported are likely conservative. It is difficult to envision a different approach to handling the samples, since they need to be shipped to a laboratory to perform the ¹⁴C–TCE assay.

Groundwater Samples

Representative results for ¹⁴C product accumulation in three of the groundwater samples are shown in Figure 1,

Figure 1. The solid line represents the experimental model fit used to determine *k*. The dashed line represents the fit to the FSGW controls. The experimental data only capture several locations, including (a) Hill AFB, (b) Tooele Army Depot, and (c) TCAAP.

Figure 2. Average pseudo first-order rate constants for experimental groundwater samples (gray), FSGW controls (red), and DDI water controls (blue). Error bars represent the 95% CI. Asterisks indicate the groundwater samples that were statistically significant compared with their respective FSGW controls.

along with the corresponding FSGW controls; results for all of the samples are available in Mills IV (2017). The bottles presented in Figure 1 span a range of results, that is, a sample with a comparatively high rate constant (k=2.65 year⁻¹; Figure 1a); a sample with a relatively low rate constant (k=0.059 year⁻¹; Figure 1b); and a sample for which there was no statistically significant difference between the groundwater and FSGW control (Figure 1c).

Overall results for the rate constants are shown in Figure 2. Two of the four samples from Plattsburgh, three of four for Tooele, and three of three from Hill AFB had statistically significant rates at 95% CI. None of the samples from TCAAP or Hopewell were statistically significant. Table 1 presents the statistically significant net rates and half-lives.

The rate constants determined in this study, 0.0066 to 2.65 year⁻¹, are conservative compared to literature values. The co-oxidation of TCE in the presence of primary substrates has been extensively studied using pure and mixed

cultures (Alvarez-Cohen and Speitel Jr 2001; Field and Sierra-Alvarez 2004). First-order rate constants range from 1.72×10^3 to 2.16×10^6 year⁻¹ (Folsom et al. 1990; Alvarez-Cohen and McCarty 1991; Oldenhuis et al. 1991; Landa et al. 1994; Chang and Alvarez-Cohen 1996; Shurtliff et al. 1996; Kelly et al. 2000). In addition, a review article summarized laboratory and in-situ first-order rate constants for the aerobic co-oxidation of TCE, ranging from 8.76 to 6.02×10^2 year⁻¹ (Suarez and Rifai 1999). The higher literature values are likely a consequence of the treatment conditions. In this study, only groundwater was used, which contains fewer organisms than samples containing groundwater and soil samples or inoculum from pure or mixed cultures grown in BSM.

The goodness of fit of the model to the data is indicated by the relatively small 95% CI. For several of the groundwater samples, the model overpredicted at the final data points (~day 40). This may have been a consequence of the

Net Pseudo First-Order Rate Constants and Half-Lives Based on Groundwater Samples and FSGW Controls					
Site Location	Well	Groundwater k (year ⁻¹)	Control k (year ⁻¹)	Net k (year ⁻¹)	$t_{1/2}$ (year)
Plattsburgh	MW-02-0061	0.540 ± 0.024	0.029 ± 0.009	0.511 ± 0.042	$1.4 \pm (1.3, 1.5)$
Plattsburgh	MW-02-019	0.158 ± 0.007	0.029 ± 0.009	0.129 ± 0.014	$5.4 \pm (4.8, 6.1)$
Tooele	D-20	0.096 ± 0.013	0.011 ± 0.003	0.085 ± 0.013	$8.1 \pm (7.0, 9.6)$
Tooele	D-231	0.035 ± 0.003	0.011 ± 0.003	0.024 ± 0.004	$29 \pm (25, 35)$
Tooele	D-251	0.069 ± 0.004	0.011 ± 0.003	0.059 ± 0.005	$12 \pm (11, 13)$
Hill	U10-043	0.020 ± 0.002	0.013 ± 0.004	0.0066 ± 0.0047	$105 \pm (62, 364)$
Hill	U10-025	0.026 ± 0.002	0.015 ± 0.004	0.011 ± 0.004	$62 \pm (44, 104)$
Hill	U10-0191	2.667 ± 0.153	0.015 ± 0.004	2.652 ± 0.138	$0.3 \pm (0.2, 0.3)$

Table 1

Denotes that the groundwater used in the FSGW control came from a different well. The FSGW controls used to determine net rates are found in Figure 2.

microbes running out of the cell resources needed to sustain the oxygenases (e.g., reducing power), and/or a cumulative toxicity effect caused by reactive byproducts from TCE co-oxidation (Alvarez-Cohen and Speitel Jr 2001). In other bottles, the model overpredicted early on; the lag in product accumulation may have reflected a lag in activity in response to the low temperature used during shipment.

Initially, only DDI water controls were used to assess background levels of ¹⁴C product accumulation. Given the high purity of the 14C-TCE added to the bottles, no accumulation was expected. However, statistically significant rates were observed, at an overall average of $3.15 \times 10^{-2} \pm 4.82 \times$ 10⁻³ year⁻¹. A possible reason for degradation of ¹⁴C–TCE in the DDI controls was the radiolysis of water molecules, which occurs when the energy emitted from the radioactive material results in formation of free radicals that degrade the radioactive material itself (Lappin and Temple 2006; Heys et al. 2009). The DDI water lacks any compounds other than TCE that could quench the radicals. In contrast, there was no accumulation of ¹⁴C products in the BSM controls. BSM contains bicarbonate buffer and organics (nitriloacetic acid, to chelate metals) that are effective in scavenging free radicals (Crittenden et al. 2012).

The overall average rate of ¹⁴C product accumulation in the FSGW controls was $1.96 \times 10^{-2} \pm 5.02 \times 10^{-3}$ ye ar⁻¹, after removing one FSGW control (32PTLW12) that was an outlier (Figure 2), as demonstrated in Appendix S11. This was significantly lower than in the DDI controls (p<0.02). There are some exceptions, including the FSGW bottles from 32PTLW12 and EPA-10S (Figure 2). Nevertheless, the overall rate constants for FSGW controls were lower than for DDI water. The groundwater likely contained compounds (including carbonates) that quenched the free radicals formed during release of energy from decay of the ¹⁴C–TCE.

Use of the FSGW controls made it possible to improve the sensitivity of the assay, allowing for detection of TCE co-oxidation at rates even lower than what was measured in the preliminary samples from Twin Lakes Recreation Area. This was of consequence for water samples from wells U10-043 and U10-025 at Hill and D-23 at Tooele. Rate constants for these groundwater samples are not statistically different from the DDI controls but they are different from the FSGW controls at 95% CI. It should be noted that not all of the groundwater samples had accompanying FSGW controls because the FSGW samples were tested as an afterthought, once the greater extent of autoradiolysis in the DDI water controls was established. Therefore, there was insufficient additional groundwater to run FSGW controls for each well. For future applications of this assay, use of FSGW controls is recommended instead of DDI water controls.

$^{14}CO_2 + ^{14}C-NSR$ and VOCs

For the eight groundwater samples that exhibited statistically significant accumulation of ¹⁴C products, additional testing was performed at the end of the monitoring period to determine the percentage of ¹⁴CO₂ and ¹⁴C–NSR that formed. Based on barium precipitation, ¹⁴CO₂ ranged from 37% to 97%, with the balance consisting of ¹⁴C–NSR (Figure 3). Similar results were obtained based on the difference between alkaline and acidic sparging (Appendix S7); there was no significant difference in the two analyses (Student's paired *t*-test, p=0.39). In samples from the propanotrophic culture, ¹⁴CO₂ increased with increasing cell density. Since this is a mixed culture, presumably members of the community were able to mineralize the products from the initial monooxygenase reaction.

The composition of the NSR was not evaluated, but likely included products that form from abiotic hydrolysis of the product from an oxygenase attack on TCE, including glyoxylate, oxalate, formate, and trichloroacetic acid (Newman and Wackett 1991, 1995; Li and Wackett 1992; Arp 1995; Arp et al. 2001; Whittaker et al. 2013). In mixed cultures, these compounds are further oxidized. Apparently, the groundwater samples and propanotrophic culture did not contain the appropriate community of microbes, or they

Figure 3. Characterization of the ¹⁴C-labeled products measured at the end of the incubation period, based on the percentage of products recovered as ¹⁴CO, and ¹⁴C-NSR. Only samples with statistically significant net rate constants were evaluated.

were not present in sufficient numbers, to achieve complete mineralization.

VOCs were evaluated at time zero and at the end of the incubation period. Plattsburgh MW-02-006 had the highest number of non-TCE peaks (nine). The peaks decreased or disappeared by the end of the incubation period. Groundwater from this well had the second highest rate constant (Figure 2, Table 1). Groundwater from Plattsburgh MW-02-009 had two appreciable non-TCE peaks and this groundwater also had a statistically significant rate constant. In groundwater samples from the two Plattsburgh wells with no significant accumulation of ¹⁴C products, VOCs other than TCE were not detected, suggesting that VOCs played a role in co-oxidation at this site. Nevertheless, VOCs other than TCE were not detected in the other six groundwater samples with statistically significant rates. Two relatively minor non-TCE VOCs were detected in one of the groundwater samples from Hopewell (EPA-16S), although none of the Hopewell samples had statistically significant rates.

The results provided compelling evidence for co-oxidation of TCE in eight of the 19 groundwater samples tested. It is not yet known what drove the process. Use of TCE as a sole carbon and energy source has not been reported, despite many years of searching. For co-oxidation to occur, cells must be present that have oxygenase enzymes and/or they are consuming primary substrate that results in expression of oxygenases. A wide variety of primary substrates support co-oxidation of TCE (Alvarez-Cohen and Speitel Jr 2001). VOCs in the Plattsburgh and Hill samples may have fulfilled this role, although VOCs other than TCE were not detected in samples from Toole (Table S1 in Appendix S1). Methane and ethene, which both support co-oxidation of TCE, were absent. Most of the VOCs eluted after TCE, which is when aromatic compounds appear. However, they were not identified. In other samples, co-oxidation occurred without any VOCs present, suggesting that some other primary substrate was available. This might include aromatic compounds found in humic acids and other components of natural organic matter found in groundwater. Humic acids have been shown to act as a primary substrate in the co-oxidation of other organic compounds (Tang et al. 2017). However, the use of natural organic matter as a primary substrate to support co-oxidation of TCE has not been demonstrated. Additional research is needed to determine the primary substrates that sustain naturally occurring co-oxidation of TCE in groundwater.

An addition to the assay that is worthy of consideration is use of negative controls, that is, for samples that test positive for apparent cometabolic activity, additional samples could be subjected to treatments that inhibit aerobic cometabolism. This includes incubation of the samples in the absence of oxygen, as well as use of inhibitors that target oxygenases (e.g., acetylene, 1-pentyne, and phenylacetylene). Negative controls could further support the conclusion that the degradation activity was a consequence of aerobic cometabolism.

There was a reasonable agreement between the rate constants for co-oxidation of TCE and the abundance of bacteria that reacted to EAPs for oxygenase enzymes or had DNA that was amplified by qPCR probes for oxygenase enzymes. Primary data on the abundance to total bacteria and bacteria reacting to EAPs for oxygenase enzymes, and the abundance of DNA that is amplified by primers for oxygenase enzymes, are available in Wiedemeier et al. (2017). A manuscript describing the association between the rate constants and the microbial markers is in preparation.

Extrapolation of Laboratory Rate Constants to Field Scale Plumes

Geochemical gradients in contaminated aquifers can be sharp (Meckenstock et al. 2015). As a result, the screened interval of a monitoring well can supply groundwater with dissolved oxygen where aerobic co-oxidation is plausible and groundwater that is devoid of oxygen where aerobic cooxidation cannot occur. If a significant portion of the TCE is in groundwater that is devoid of oxygen, it is not appropriate to use the rate constant from the ¹⁴C assay for aerobic cooxidation to describe the behavior of the field scale plume. If the co-oxidation process is carried out by bacteria located at the interface between the aerobic groundwater and anaerobic groundwater, it is possible that the rate constant is controlled by mass transfer processes for dissolved oxygen from the aerobic portions of the aquifer and a primary substrate from the anaerobic portion of the plume (Meckenstock et al. 2015). In either case, the rate constant from the laboratory ¹⁴C assay would not describe the field scale plume.

The groundwater sampled from wells U10-019 at Hill AFB, and wells MW-02-006 and MW-02-019 at the former Plattsburgh AFB has the highest rate constants for TCE co-oxidation (Table 1). The water from these wells also had detectable concentrations of Iron (II) (Table S2 in Appendix S1), indicating that some of the flow to the wells was water that was devoid of dissolved oxygen. It would not be appropriate to use the rate constants from the ¹⁴C assay to predict the behavior of TCE in these plumes, unless or until it can be shown that the TCE is associated with groundwater that has oxygen available for aerobic co-oxidation, and that the substrate for co-oxidation is uniformly distributed in the contaminated plume.

Conclusions

The ¹⁴C–TCE assay allowed for quantification of pseudo first-order rate constants in groundwater samples from 8 of the 19 wells evaluated, at rates ranging from 0.0066 to 2.65 year⁻¹. This translates to half-lives of 0.26 to 105 years. In groundwater from the other 11 wells, the rate of ¹⁴C product accumulation was not statistically different from the FSGW controls at 95% CI, so that no rate is reported. Although only a single GC column was used for purification of the ¹⁴C–TCE, the level of impurities delivered to the serum bottles was sufficiently low to allow for detection of a half-life as long as 105 years. As a means to reduce cost and improve turn-around times for the assay, it may be possible to shorten the duration of the assay to less than 5 days. A shorter assay duration would also mitigate the effect of deviating from native conditions.

It is important to note that pseudo first-order rate constants that were extracted in this study are site specific. Because the constants are not normalized, they should not be applied to model other sites. The ¹⁴C assay is offered as a well-documented procedure that uses a short-term laboratory study done with groundwater samples from a site to provide a rate constant for TCE co-oxidation in a groundwater plume at the site. The rate constant can provide a second line of evidence for natural attenuation at sites where MNA is under consideration as a remedy or a component of a remedy for the site.

The protocol developed for this study may be used to determine if aerobic cometabolism contributes to natural attenuation of TCE. This is especially relevant when monitoring data indicate TCE is attenuating at a higher rate than can be explained by dilution alone, yet a mechanism to explain these observations is lacking. It is conceivable that the assay may yield false negatives, due to lower rates of activity in the laboratory versus the field caused by factors such as sample handling and the absence of soil (and therefore a lower level of microbes) as part of the assay. However, the assay was able to detect activity corresponding to half-lives in excess of 100 years, corresponding to low first order rates of cometabolism.

Use of ¹⁴C–TCE poses challenges. The assay is limited to laboratories that can safely handle radioactive material and the cost for custom-synthesized material is appreciable. Nevertheless, use of ¹⁴C provides definitive evidence for the occurrence of biotic activity via the accumulation of labeled products. Furthermore, use of ¹⁴C–TCE allows for measurement of rates in a reasonable time-frame that are considerably lower than what is feasible using unlabeled TCE. While compound specific isotope analysis avoids some of the challenges posed by using ¹⁴C–TCE, it is difficult to establish enrichment of δ^{13} C-TCE in dilute plumes at low rates of cometabolism.

¹⁴CO₂ constituted most of the ¹⁴C product quantified, followed by ¹⁴C–NSR. This indicated that the groundwater samples that exhibited co-oxidation of TCE contained microbes with the ability to mineralize most of the products formed from the initial oxygenase attack on the compound within the short period of time that was available in the assay. Although the composition of the NSR was not evaluated in this study, procedures to evaluate the NSR are well established (Darlington et al. 2008).

Supporting Information

The following supporting information is available for this article:

Appendix S1. Concentration of TCE, presence of other VOCs, concentrations of dissolved oxygen and iron (II), and pH at site locations.

Appendix S2. Preparation of the ¹⁴C–TCE stock solution and other chemicals.

Appendix S3. Method for adding ¹⁴C–TCE to ground-water samples.

Appendix S4. Impurities in the ${}^{14}C$ -TCE Stock Solution.

Appendix S5. Sparging to remove residual ¹⁴C–TCE in alkaline 3.0 mL samples.

Appendix S6. Experimental sampling procedure.

Appendix S7. Acid sparging method to determine ${}^{14}\text{CO}_2$ and ${}^{14}\text{C}-\text{NSR}$.

Appendix S8. Protocol for determining *k*.

Appendix S9. Results for positive controls.

Appendix S10. Effect of storage conditions on the rate of ¹⁴C product accumulation.

Appendix S11. Outlier identification for the FSGW controls.

References

- Alvarez-Cohen, L., and P.L. McCarty. 1991. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. *Applied and Environmental Microbiology* 57, no. 4: 1031–1037.
- Alvarez-Cohen, L., and G.E. Speitel Jr. 2001. Kinetics of aerobic cometabolism of chlorinated solvents. *Biodegradation* 12, no. 2: 105–126.
- Alvarez, P.J.J., and W.A. Illman. 2006. Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Arp, D. 1995. Understanding the diversity of trichloroethene cooxidations. *Current Opinion in Biotechnology* 6, no. 3: 352–358.
- Arp, D.J., C.M. Yeager, and M.R. Hyman. 2001. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. *Biodegradation* 12, no. 2: 81–103.
- Baldwin, B.R., C.H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and realtime PCR. *Applied and Environmental Microbiology* 69, no. 6: 3350–3358.
- Bradley, P.M. 2003. History and ecology of chloroethene biodegradation: A review. *Bioremediation Journal* 7, no. 2: 81–109.
- Chang, H.-L., and L. Alvarez-Cohen. 1995. Model for the cometabolic biodegradation of chlorinated organics. *Environmental Science & Technology* 29, no. 9: 2357–2367.
- Chang, H.L., and L. Alvarez-Cohen. 1996. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. *Applied and Environmental Microbiology* 62, no. 9: 3371–3377.
- Clingenpeel, S.R., W.K. Keener, C.R. Keller, K. De Jesus, M.H. Howard, and M.E. Watwood. 2005. Activity-dependent fluorescent labeling of bacterial cells expressing the TOL pathway. *Journal of Microbiological Methods* 60, no. 1: 41–46.
- Crittenden, J.C., R.R. Trussell, D.W. Hand, K.J. Howe, and G. Tchobanoglous. 2012. *MWH's Water Treatment: Principles and Design*, 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Darlington, R., L. Lehmicke, R.G. Andrachek, and D.L. Freedman. 2008. Biotic and abiotic anaerobic transformations of trichloroethene and *cis*-1,2-dichloroethene in fractured sandstone. *Environmental Science & Technology* 42, no. 12: 4323–4330.
- EPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, OSWER Directive 9200.4-17P. https://www.epa.gov/sites/ production/files/2014-02/documents/d9200.4-17.pdf (accessed December 1, 2017).
- Field, J.A., and R. Sierra-Alvarez. 2004. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. *Reviews in Environmental Science and Bio/Technology* 3, no. 3: 185–254.
- Folsom, B.R., P.J. Chapman, and P.H. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. *Applied and Environmental Microbiology* 56, no. 5: 1279–1285.
- Frascari, D., Y. Kim, M.E. Dolan, and L. Semprini. 2003. A kinetic study of aerobic propane uptake and cometabolic degradation of chloroform, cis-dichloroethylene and trichloroethylene in microcosms with groundwater/aquifer solids. *Water, Air, & Soil Pollution* 3, no. 3: 285–298.

- Gossett, J.M. 1987. Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons. *Environmental Science & Technology* 21, no. 2: 202–208.
- Heys, J.R., R. Voges, and T. Moenius. 2009. *Preparation of Compounds Labeled with Tritium and Carbon-14*. Hoboken, New Jersey: John Wiley & Sons.
- Illman, W.A., and P.J. Alvarez. 2009. Performance assessment of bioremediation and natural attenuation. *Critical Reviews in Environmental Science and Technology* 39, no. 4: 209–270.
- Keener, W.K., M.E. Watwood, and W.A. Apel. 1998. Activitydependent fluorescent labeling of bacteria that degrade toluene via toluene 2,3-dioxygenase. *Applied Microbiology and Biotechnology* 49, no. 4: 455–462.
- Keener, W.K., M.E. Watwood, K.D. Schaller, M.R. Walton, J.K. Partin, W.A. Smith, and S.R. Clingenpeel. 2001. Use of selective inhibitors and chromogenic substrates to differentiate bacteria based on toluene oxygenase activity. *Journal of Microbiological Methods* 46, no. 3: 171–185.
- Kelly, C.J., P.R. Bienkowski, and G.S. Sayler. 2000. Kinetic analysis of a *tod-lux* bacterial reporter for toluene degradation and trichloroethylene cometabolism. *Biotechnology and Bioengineering* 69, no. 3: 256–265.
- Kirtland, B.C., C.M. Aelion, P.A. Stone, and D. Hunkeler. 2003. Isotopic and geochemical assessment of in situ biodegradation of chlorinated hydrocarbons. *Environmental Science & Technology* 37, no. 18: 4205–4212.
- Landa, A.S., E.M. Sipkema, J. Weijma, A.A. Beenackers, J. Dolfing, and D.B. Janssen. 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. *Applied and Environmental Microbiology* 60, no. 9: 3368–3374.
- Lappin, G., and S. Temple. 2006. *Radiotracers in Drug Development*. Boca Raton, FL: CRC Press.
- Li, S., and L.P. Wackett. 1992. Trichloroethylene oxidation by toluene dioxygenase. *Biochemical and Biophysical Research Communications* 185, no. 1: 443–451.
- Löffler, F.E., K.M. Ritalahti, and S.H. Zinder. 2013. Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents, in Bioaugmentation for Groundwater Remediation, 39–88. New York, NY: Springer.
- Meckenstock, R.U., M. Elsner, C. Griebler, T. Lueders, C. Stumpp, J. Aamand, S.N. Agathos, H.-J. Albrechtsen, L. Bastiaens, P.L. Bjerg, N. Boon, W. Dejonghe, W.E. Huang, S.I. Schmidt, E. Smolders, S.R. Sørensen, D. Springael, and B.M. van Breukelen. 2015. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. *Environmental Science & Technology* 49, no. 12: 7073–7081.
- Miller, A., W. Keener, M. Watwood, and F. Roberto. 2002. A rapid fluorescence-based assay for detecting soluble methane monooxygenase. *Applied Microbiology and Biotechnology* 58, no. 2: 183–188.
- Mills IV, J.C. 2017. Quantification of TCE Co-Oxidation in Groundwater Using a ¹⁴C–assay. M.S. thesis, Clemson University, Clemson, SC.
- Morrill, P.L., G. Lacrampe-Couloume, G.F. Slater, B.E. Sleep, E.A. Edwards, M.L. McMaster, D.W. Major, and B. Sherwood Lollar. 2005. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. *Journal of Contaminant Hydrology* 76, no. 3–4: 279–293.
- National Research Council. 2000. Natural Attenuation for Groundwater Remediation. Washington, DC: The National Academies Press.
- Newman, L.M., and L.P. Wackett. 1995. Purification and characterization of toluene 2-monooxygenase from *Burkholderia cepacia* G4. *Biochemistry* 34, no. 43: 14066–14076.
- Newman, L.M., and L.P. Wackett. 1991. Fate of 2,2,2-trichloroacetaldehyde (chloral hydrate) produced during trichloroethylene

oxidation by methanotrophs. *Applied and Environmental Microbiology* 57, no. 8: 2399–2402.

- Oldenhuis, R., J.Y. Oedzes, J.J. van der Waarde, and D.B. Janssen. 1991. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. *Applied and Environmental Microbiology* 57, no. 1: 7–14.
- Paszczynski, A.J., R. Paidisetti, A.K. Johnson, R.L. Crawford, F.S. Colwell, T. Green, M. Delwiche, H. Lee, D. Newby, E.L. Brodie, and M. Conrad. 2011. Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. *Biodegradation* 22: 1045–1059.
- Ritalahti, K.M., B.K. Amos, Y. Sung, Q. Wu, S.S. Koenigsberg, and F.E. Löffler. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple *Dehalococcoides* strains. *Applied and Environmental Microbiol*ogy 72, no. 4: 2765–2774.
- Rodriguez, F.J.B. 2016. Evaluation of 1,4-dioxane biodegradation under aerobic and anaerobic conditions. Ph.D. dissertation, Clemson University, Clemson, SC.
- Schmidt, S.K., S. Simkins, and M. Alexander. 1985. Models for the kinetics of biodegradation of organic compounds not supporting growth. *Applied and Environmental Microbiology* 50, no. 2: 323–331.
- Sherwood Lollar, B., G.F. Slater, B. Sleep, M. Witt, G.M. Klecka, M. Harkness, and J. Spivack. 2000. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. *Environmental Science* & *Technology* 35, no. 2: 261–269.
- Shurtliff, M.M., G.F. Parkin, L.J. Weathers, and D.T. Gibson. 1996. Biotransformation of trichloroethylene by a phenol-induced mixed culture. *Journal of Environmental Engineering* 122, no. 7: 581–589.
- Sorenson, K.S., L.N. Peterson, R.E. Hinchee, and R.L. Ely. 2000. An evaluation of aerobic trichloroethene attenuation using first-order rate estimation. *Bioremediation Journal* 4, no. 4: 337–357.
- Sturchio, N.C., J.L. Clausen, L.J. Heraty, L. Huang, B.D. Holt, and T.A. Abrajano Jr. 1998. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer. *Environmental Science & Technology* 32, no. 20: 3037–3042.
- Suarez, M.P., and H.S. Rifai. 1999. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. *Bioremediation Journal* 3, no. 4: 337–362.
- Tang, K., M. Escola Casas, G.T.H. Ooi, K.M.S. Kaarsholm, K. Bester, and H.R. Andersen. 2017. Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater. *International Journal of Hygiene and Environmental Health* 220, no. 3: 604–610.
- Whittaker, M., D. Monroe, D.J. Oh, and S. Anderson. 2013. Trichloroethylene degradation pathway. http://eawag-bbd.ethz.ch/tce/ tce_map.html (accessed June 19, 2017).
- Wiedemeier, T.H., H.S. Rifai, C.J. Newell, and J.T. Wilson. 1999 Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Wiedemeier, T.H., B.H. Wilson, M.L. Ferrey, and J.T. Wilson. 2016. Efficacy of an in-well sonde to determine magnetic susceptibility of aquifer sediment. *Groundwater Monitoring & Remediation* 37, no. 2: 25–34.
- Wiedemeier, T.H., J.T. Wilson, D.L. Freedman, and B. Lee. 2017. Providing additional support for monitored natural attenuation by including quantitative lines of evidence for abiotic degradation and co-metabolic oxidation of chlorinated ethylenes. ESTCP Final Report for ER-201584. https://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/ Persistent-Contamination/ER-201584/ER-201584 (accessed January 25, 2018).

⁶⁶ J.C. Mills IV et al./ Groundwater Monitoring & Remediation 38, no. 2: 57–67

Biographical Sketches

James C. Mills IV, M.S., Department of Environmental Engineering and Earth Sciences, Clemson, SC 29634; Present address: Geosyntec Consultants, 13101 Telecom Dr #120, Temple Terrace, FL 33637; jcmills@g.clemson.edu

John T. Wilson, Ph.D., Cornell University, Principal Scientist with the Scissortail Environmental Solutions LLC, Ada, OK 74821: iohn@scissortailenv.com

Barbara H. Wilson, M.S., M.P.H., University of Oklahoma, Managing Member and Scientist with the Scissortail Environmental Solutions LLC, Ada, OK 74821; barbara@scissortailenv.com Todd H. Wiedemeier, Deceased.

David L. Freedman, Ph.D., corresponding author, Cornell University, Professor and Department Chair, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634; dfreedm@clemson.edu

Would you like to save on the latest in groundwater literature?

You don't have to look any further than NGWA's online bookstore! This one-stop shop for all of your groundwater literature needs has more than 100 titles from the major science publishers — as well as NGWA Press — and at prices that beat those of major publishing houses. NGWA members save even more — an average of 20%!

Wiley's Remediation Technologies Handbook

MAJOR CONTAMINANT CHEMICALS AND CHEMICAL GROUPS

Hydrogeological **Conceptual Site Models** Data Analysis nd Visualization

Chlorinated Solvent Source Zone Remediation

SERD

Contesting Hidden Waters

Start shopping and saving today. NGWA.org/Bookstore (800) 551-7379 or (614) 898-7791.