

VIA FEDERAL EXPRESS

August 18, 2015

Erich Weissbart, P.G. Land and Chemicals Division U.S. Environmental Protection Agency, Region III 701 Mapes Road Fort Meade, MD 20755

Re: Quarterly Status Report No. 6 Kop-Flex Voluntary Cleanup Site #31, Hanover, Maryland

Dear Erich:

On behalf of EMERSUB 16 LLC, a subsidiary of Emerson Electric Co., WSP Corp. is submitting this progress report describing the investigation and remediation activities conducted in the second quarter 2015 at the Kop-Flex Voluntary Cleanup Program (VCP) site in Hanover, Maryland. The report also describes the activities planned for the third quarter 2015. If you have any questions, please do not hesitate to contact us at 703-709-6500.

Sincerely yours,

Robert E. Johnson, PhD.

Senior Technical Manager

REJ:kjb k:\emerson\kop-flex\reporting\status reports\mde reports\2015\3705_0715rejrep_kopflex_progress_rpt_6_final.docx

cc/encl.: Mr. Stephen Clarke, Emerson Electric Co. Ms. Richelle Hanson, Maryland Department of the Environment

Enclosures

Kop-Flex VCP Site #31

April 2015 through June 2015

Site Name: Site Address:	Former Kop-Flex Facility 7565 Harmans Road Hanover, Maryland 21076
Consultant: Address:	WSP USA Corp. 11190 Sunrise Valley Dr., Suite 300 Reston, Virginia 20191
Phone No.:	(703) 709-6500
Site Coordinator: Alternate:	Eric Johnson Jim Bulman

1.0 Onsite Activities

The following activities were conducted during the Second Quarter 2015.

On May 13, 2015, an updated Site-Specific Risk Assessment (SSRA) for the former Kop-Flex facility was submitted to the Maryland Department of the Environment (MDE). Pursuant to MDE's request, the previous (2009) SSRA was updated to incorporate (1) the results of investigation and remediation activities conducted after 2009, (2) the change in future property use from industrial to commercial, and (3) the current toxicity information and risk characterization methods.

MDE provided technical comments on the updated SSRA via electronic mail on June 12, 2015. WSP and Emerson reviewed the comments and revised the risk assessment accordingly. The revised SSRA document, which included responses to the comments, was submitted to MDE in early July 2015.

- A Response Action Plan (RAP) for the onsite area was prepared and submitted to MDE and U.S. Environmental Protection Agency (EPA), Region III on June 2, 2015. The RAP describes the proposed remedial actions for addressing volatile organic compounds (VOCs) present in the soil and groundwater on the Kop-Flex property. The plan also includes supporting plans (e.g., Soil Management Plan and Groundwater Monitoring Plan) to be followed during the implementation of the proposed remedial activities.
- All onsite monitoring wells and offsite well MW-24D on the adjoining Williams-Scotsman property, were sampled the week of June 15, 2015. This sampling event was a continuation of the semi-annual groundwater monitoring activities at the Kop-Flex VCP site.

A synoptic round of water level measurements was obtained at the beginning of the sampling activities. A contour map of the groundwater surface, or water table, for the surficial (unconfined) zone at the former Kop-Flex facility is shown in Figure 1. The hydraulic head contours indicate a generally westward flow direction toward Stony Run, which is consistent with the evaluation of previous hydrologic data from this portion of the aquifer system. Figure 2 depicts the potentiometric surface contours for the deeper (semi-confined) portion of the Lower Patapsco aquifer based on the contouring

Kop-Flex VCP Site #31

April 2015 through June 2015

of water level data from both on and offsite wells. The hydraulic head data indicates a generally southsoutheast flow path for groundwater in the deeper semi-confined zone.

The analytical results for the June 2015 groundwater monitoring event are summarized in Table 1. Historical data (2009 to June 2015) for the onsite monitoring wells are summarized in Table 2. (Copies of the laboratory reports for these samples are provided in Enclosure A.) For wells completed in the surficial (unconfined) zone north and west of the former manufacturing building, the VOC distribution indicated by the June 2015 analytical results is similar to data from previous sampling events (Figure 3). The shallow (MW-07) and intermediate-depth (MW-18 and MW-39) perimeter wells continue to show no VOCs at levels of concern. Even though the 1.4-dioxane concentration in the MW-03 sample (7.5 micrograms per liter [µg/l]) is slightly above the MDE risk-based level, evaluation of the sampling results indicate site-related COCs are not migrating offsite in the surficial portion of the aguifer. The VOC distribution in the surficial zone east of the building is also generally consistent with previous monitoring results (Figure 3). Total VOC concentrations in samples from shallow and intermediatedepth wells immediately east of the former manufacturing building are similar to historical levels, and reflect the temporal fluctuation in constituent concentrations in the aguifer. The continued decrease in VOC concentrations at the MW-15 location may reflect biotic and abiotic degradation activity associated with the emulsified zero-valent iron injection in 2013 (Table 2). Samples from wells south of the building (MW-01, MW-06, MW-14 and MW-17) showed non-detect levels for 1,4-dioxane and siterelated chlorinated VOCs. For deeper wells screened in the semi-confined portion of the Lower Patapsco aguifer, the VOC concentrations for the June 2015 samples are similar to historical levels (Figure 4). The only notable exception is the sample collected from well MW-17D near the southeast corner of the building, where the concentrations of chlorinated VOCs and 1.4-dioxane continue to show a noticeable reduction compared to historical data (Table 2). The decrease in VOC concentrations at this well location could be linked to mass removal during the pumping test activities conducted in the spring of 2014.

- As part of the June 2015 semi-annual monitoring event, field data were collected from Stony Run to determine the discharge for the reach of this stream on the Kop-Flex property. The hydrologic data were obtained at three times during the field activities and included measurements of stream stage using a staff gage and flow velocity. Evaluation of the hydrologic measurements indicates discharge values for Stony Run ranging between 3.7 cubic feet per second (cfs), which equates to 1,650 gallons per minute (gpm), to 5.7 cfs, or 2,560 gpm.
- A public informational meeting involving representatives of Emerson, WSP, MDE, and the property developer (Trammell Crow) was convened on June 24, 2015, at the Anne Arundel Community College at Arundel Mills campus in Hanover, Maryland to (1) obtain public input concerning the RAP submitted to MDE in early June, and (2) provide an overview of the offsite investigation results since the last public meeting and proposed future activities for the offsite area.

Following the public informational meeting, a conference call between WSP and MDE project team members was held on June 26, 2015, to discuss potential community involvement activities for the site. Based on this discussion, WSP and Emerson agreed to provide MDE with a compendium of public involvement activities to be implemented during future investigation and remediation work.

Kop-Flex VCP Site #31

April 2015 through June 2015

2.0 Offsite Activities

2.1 Offsite Groundwater Monitoring Program

- An Offsite Groundwater Monitoring Plan was prepared and submitted to MDE and USEPA Region III on June 18, 2015. This groundwater monitoring plan described the proposed response action for the VOC-affected groundwater in the offsite area. The objectives of the monitoring program will be to (1) gather additional groundwater quality data to evaluate the distribution of site-related VOCs in the aquifer system hydraulically downgradient of the former Kop-Flex facility, and (2) assess trends in the VOC concentrations at each monitoring point.
- The recently installed offsite monitoring wells were sampled the week of June 22, 2015, as requested by MDE. The analytical results are summarized in Table 3, and historical sampling data for the offsite wells are provided in Table 4. (A copy of the laboratory report for these samples is provided in Enclosure A.) No site-related VOCs were detected in the samples from the two shallow wells (MW-25-40 and MW-28-45) in the unconfined portion of the Lower Patapsco aguifer. For the deep wells completed in the semi-confined portion of the Lower Patapsco aguifer, 1,1-dichloroethene (DCE), 1,2dichloroethane, trichloroethene, and 1.4-dioxane were detected at levels above the MDE groundwater quality criteria in the sample from well MW-25-130, which is located in the northeastern portion of the Harmans Woods neighborhood south of the Maryland Route 100 (Table 3 and Figure 5). Lower concentrations of these site-related VOCs were present in the sample from the deeper well (MW-25-192) at this location, which is consistent with the vertical distribution of constituents determined from previous groundwater investigations. The sampling data for the deep monitoring wells located further south of MW-25 indicated non-detect to very low concentrations of the site-related VOCs (Figure 5). The 1,1-DCE concentration in the sample from well MW-28-210 (12.8 μ g/l) is slightly above the applicable groundwater quality standard. In addition, 1,4-dioxane was detected at a concentration of 6.8 µg/l the sample from the deeper of the two wells at the MW-33 location (MW-33-295) (Table 1). The groundwater sample from the shallower of the two wells at the MW-33 location had non-detect levels for the site-related VOCs.

2.2 Residential Well Sampling

 On June 22, 2015, a water sample was collected from the potable well at 763 Donaldson Avenue, which is located in the Phase 3 sampling area. This well had not been previously sampled due to the inability to schedule a sampling appointment with the homeowner.

The analytical results for this residential well sample were received on July 9, 2015. Copies of the laboratory reporting sheets for this sample are included in the certified analytical report provided in Enclosure B. No site-related VOCs were detected above the applicable groundwater comparative criteria in the well sample.

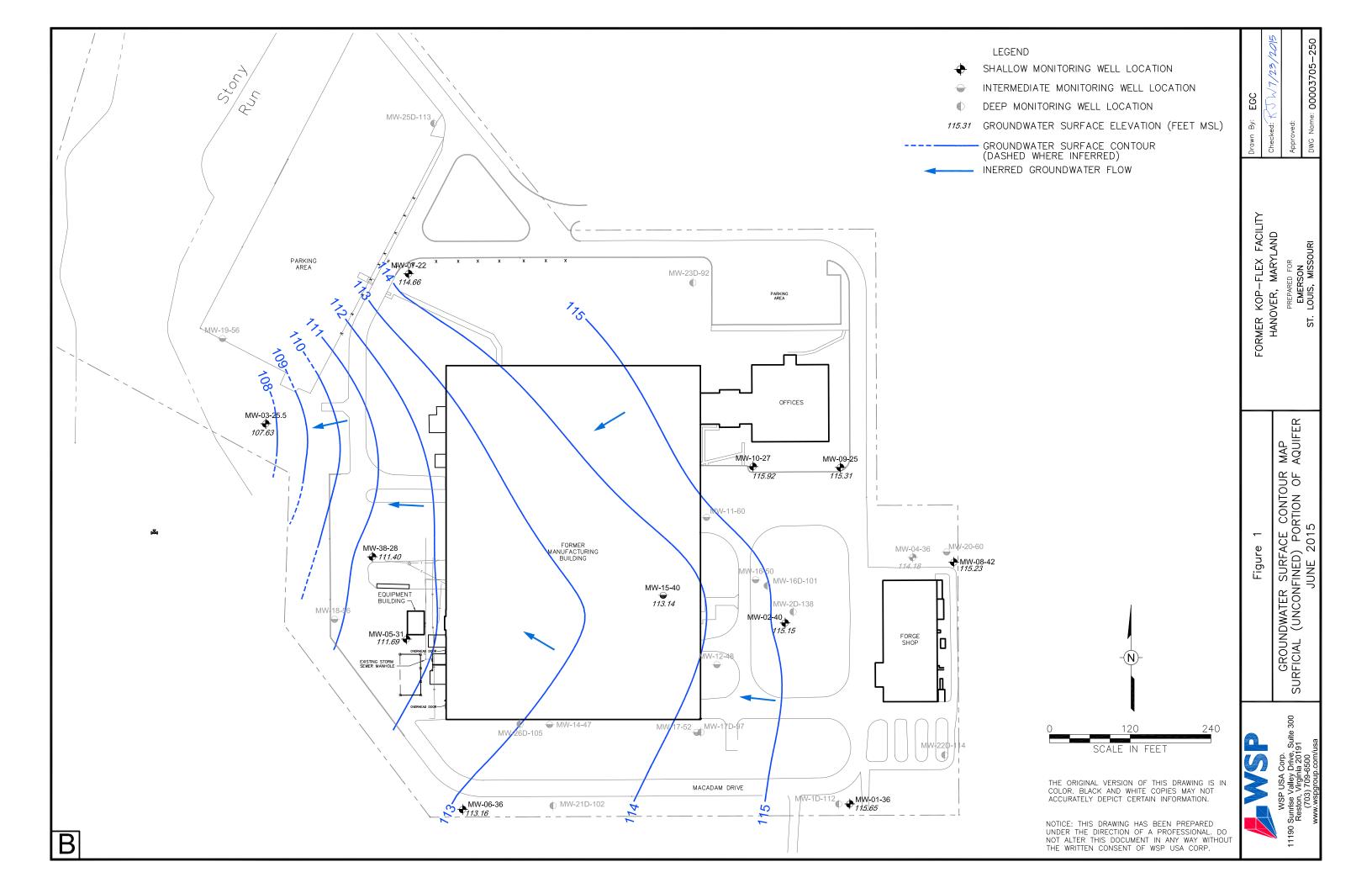
Kop-Flex VCP Site #31

April 2015 through June 2015

3.0 Planned Activities for Next Reporting Period (July 2015 - September 2015)

3.1 Onsite Activities

- Review any comments issued by MDE and USEPA on the RAP submitted in early June 2015.
- Submit additional information to MDE for the review of the Water Appropriation and Use Permit application.


3.2 Offsite Activities

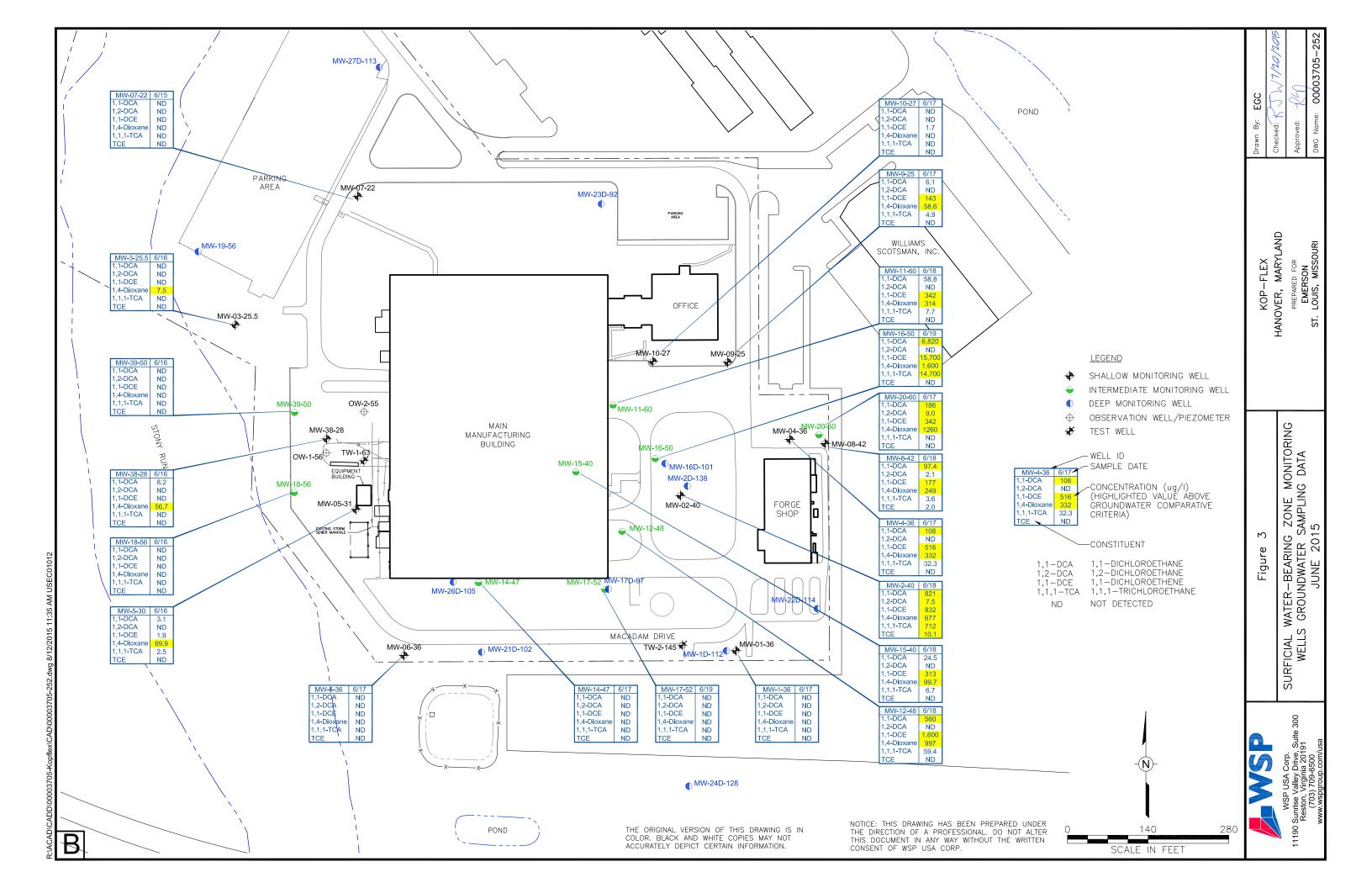

- Review any comments issued by MDE and USEPA on the Offsite Groundwater Monitoring Plan submitted in mid-June 2015.
- Conduct the third quarter 2015 sampling of the offsite monitoring wells in the residential areas south of Maryland Route 100.
- Collect semi-annual water samples from the following potable wells in the Severn area:
 - 7740 Twin Oaks Road
 - 7932 Andorick Drive
 - 854 Reece Road

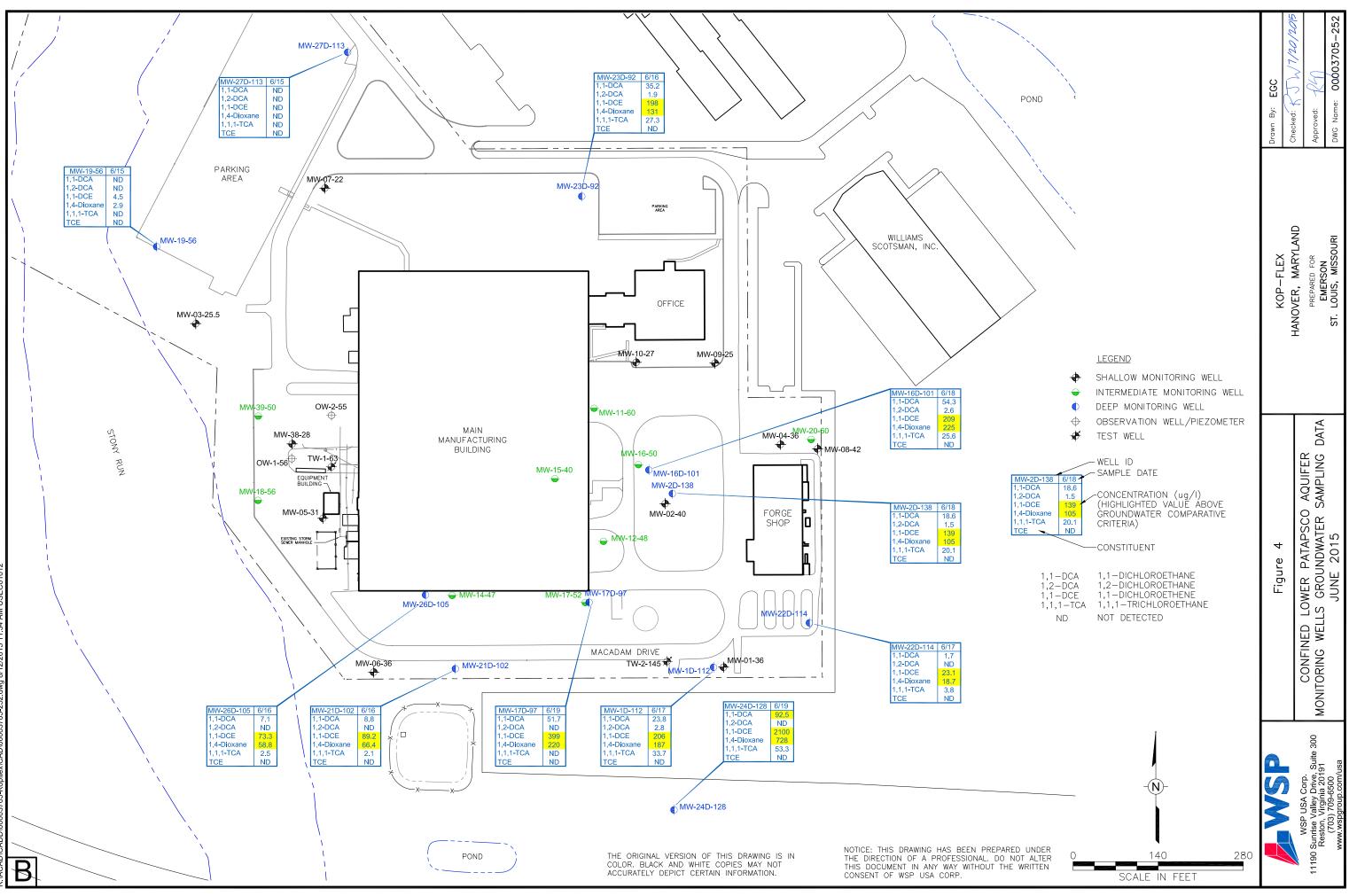
4.0 Key Personnel Changes

There were no changes to key project personnel during the reporting period.

Figures

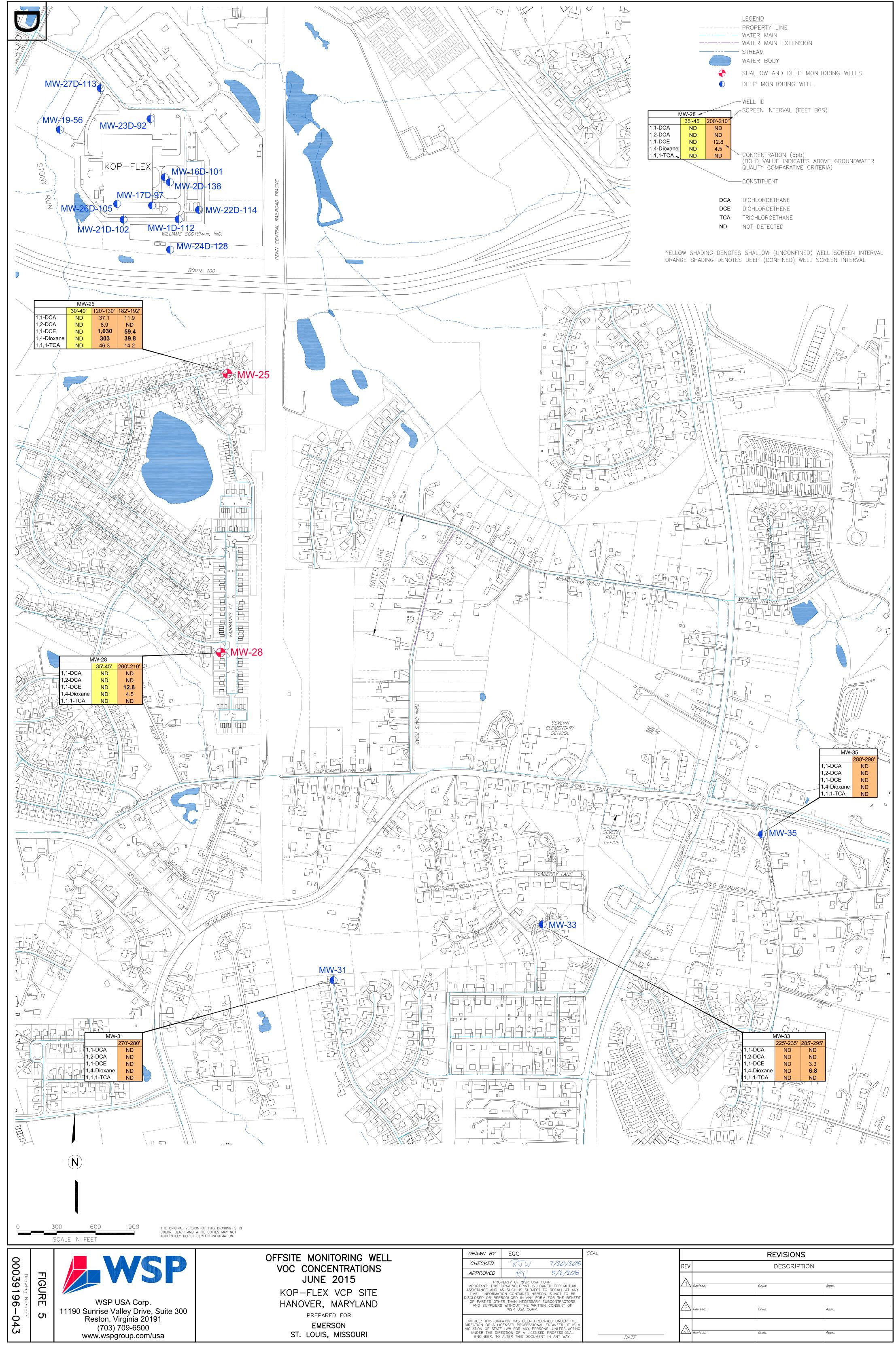
	LEGEND	
	PROPERTY LINE	
	WATER MAIN	
	WATER MAIN EXTENSION	
	STREAM	
	WATER BODY	
	SHALLOW AND DEEP MONITORING WELLS	
$\mathbf{\Phi}$	DEEP MONITORING WELL	۷ Z
•	PRIVATE WELL (APPROXIMATE LOCATION)	
	POTENTIOMETRIC SURFACE CONTOUR (FEET MSL)	REVISIONS
	INFERRED GROUNDWATER FLOW DIRECTION	


 (\mathbf{N})


400 800

SCALE IN FEET

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK AND WHITE COPIES MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.


MSL)	REVISIONS	REV DESCRIPTION		Revised: Chkd: Appr.:	Revised: Chird. Aner ·		<u>Akta.</u>	Appr.:
	DRAWN BY EGC SEAL	CHECKED (1)/9/2015	APPROVED 1	PROPERTY OF W\$P USA CORP. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE	DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONRACTORS AND SUPPLIERS WITHOUT THE WRITTEN CONSENT OF MACP IISA COPP		NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, IT IS A VICLATION OF STATE LAW FOR ANY PERSONS, UNLESS ACTING	UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT IN ANY WAY.
	POTENTIOMETRIC SURFACE CONTOURS FOR THE			KOP-FLEX VCP SITE	HANOVER, MARYLAND	PREPARED FOR	EMERSON	ST. LOUIS, MISSOURI
						11190 Sunrise Valley Drive, Suite 300	(703) 709-6500	www.wspgroup.com/usa
1200	(00	D	IGUI ^{rawing} 391	Numt			

.CADI.CADD\00003705-Kopflex\CAD\00003705-252.dwg 8/12/2015 11:34.

R:\ACAD\CADD\00039196-Kopflex\CAD\00039196-043.dwg 8/11/2015 4:29 PM USEC01012

Summary of Onsite Monitoring Well Results June 2015 Sampling Event Kop-Flex VCP Site Hanover, Maryland

<u>Analyte (b)</u>	MDE Groundwater Quality Criteria (ug/L)	MW-01-36 <u>6/17/2015</u>	MW-01D-112 <u>6/17/2015</u>	MW-02-40 <u>6/18/2015</u>	MW-02D-138 <u>6/18/2015</u>	MW-03-25.5 <u>6/16/2015</u>	MW-04-36 <u>6/17/2015</u>	MW-05-31 <u>6/16/2015</u>
1,1,1-Trichloroethane	200	1 U	33.7	712	20.1	1 U	32.3	2.5
1.1-Dichloroethane	90	1 U	23.8	821	18.6	1 U	108	1.9
1.1-Dichloroethene	7	1 U	206	832	139	1 U	516	3.1
1.2-Dichloroethane	5	1 U	2.8	7.5	1.5	1 U	5 U	1 U
Trichloroethene	5	1 U	2.5 U	10.1	1 U	1 U	5 U	1 U
1,4-Dioxane	6.7 (e)	2 U	187	677	105	7.5	332	69.9
Tetrachloroethene	5	1 U	2.5 U	5 U	1 U	1 U	5 U	1 U

a/ U = not detected at a concentration above the method detection limit.
Bolded number indicates concentration above the

groundwater quality criteria.

b/ All concentrations in micrograms per liter (μ g/l) c/ Sample and Duplicate

The duplicate of MW-23D-92 is identified as MW-100. The duplicate of MW-11-60 is identified as MW-101.

d/ MDE Groundwater Quality Criteria sources: http://www.mde.maryland.gov/assets/document/ Final%20Update%20No%202.1%20dated%205-20-08(1).pdf

Summary of Onsite Monitoring Well Results June 2015 Sampling Event Kop-Flex VCP Site Hanover, Maryland

<u>Analyte (b)</u>	MDE Groundwater Quality Criteria (ug/L)	MW-06-36 <u>6/17/2015</u>	MW-07-22 <u>6/15/2015</u>	MW-08-42 <u>6/18/2015</u>	MW-09-25 <u>6/17/2015</u>	MW-10-27 <u>6/17/2015</u>	MW-11-60 <u>6/18/2015</u>	MW-101 <u>6/18/2015</u>	MW-12-48 <u>6/18/2015</u>	MW-14-47 <u>6/17/2015</u>
1,1,1-Trichloroethane	200	1 U	1 U	3.6	4.9	1 U	7.7	11.3	59.4	1 U
1,1-Dichloroethane	90	1 U	1 U	97.4	6.1	1 U	58.8	79.8	560	1 U
1,1-Dichloroethene	7	1 U	1 U	177	143	1.7	342	429	1,600	1 U
1,2-Dichloroethane	5	1 U	1 U	2.1	1 U	1 U	4 U	5 U	25 U	1 U
Trichloroethene	5	1 U	1 U	2	1 U	1 U	4 U	5 U	25 U	1 U
1,4-Dioxane	6.7 (e)	2 U	2 U	249	58.6	2 U	314	340	997	2 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	4 U	5 U	25 U	1 U

a/ U = not detected at a concentration above the method detection limit.

Bolded number indicates concentration above the groundwater quality criteria.

b/ All concentrations in micrograms per liter (μ g/l)

c/ Sample and Duplicate The duplicate of MW-23D-92 is identified as MW-100. The duplicate of MW-11-60 is identified as MW-101.

d/ MDE Groundwater Quality Criteria sources: http://www.mde.maryland.gov/assets/document/ Final%20Update%20No%202.1%20dated%205-20-08(1).pd

Summary of Onsite Monitoring Well Results June 2015 Sampling Event Kop-Flex VCP Site Hanover, Maryland

<u>Analyte (b)</u>	MDE Groundwater Quality Criteria (ug/L)	MW-15-40 <u>6/18/2015</u>	MW-16-50 <u>6/19/2015</u>	MW-16D-101 <u>6/18/2015</u>	MW-17-52 <u>6/19/2015</u>	MW-17D-97 <u>6/19/2015</u>	MW-18-56 <u>6/16/2015</u>
1.1.1-Trichloroethane	200	6.7	14,700	25.6	1 U	5 U	1 U
1,1-Dichloroethane	90	24.5	6,820	54.3	1 U	51.7	1 U
1,1-Dichloroethene	7	313	15,700	209	1 U	399	1 U
1,2-Dichloroethane	5	4 U	400 U	2.6	1 U	5 U	1 U
Trichloroethene	5	4 U	400 U	2.5 U	1 U	5 U	1 U
1,4-Dioxane	6.7 (e)	99.7	1,600	225	2 U	220	2 U
Tetrachloroethene	5	4 U	400 U	2.5 U	1 U	5 U	1 U

a/ U = not detected at a concentration above the method detection limit.
Bolded number indicates concentration above the

groundwater quality criteria.

b/ All concentrations in micrograms per liter (μg/l)
c/ Sample and Duplicate

The duplicate of MW-23D-92 is identified as MW-100.

The duplicate of MW-11-60 is identified as MW-101. d/ MDE Groundwater Quality Criteria sources:

http://www.mde.maryland.gov/assets/document/ Final%20Update%20No%202.1%20dated%205-20-08(1).pd

MW-19-56	MW-20-60
<u>6/15/2015</u>	<u>6/17/2015</u>
1 U	4 U
1 U	186
4.5	342
1 U	9
1 U	4 U
2.9	1,260
1 U	4 U

Summary of Onsite Monitoring Well Results June 2015 Sampling Event Kop-Flex VCP Site Hanover, Maryland

Analyte (b)	MDE Groundwater Quality Criteria (ug/L)	MW-21D-102 <u>6/16/2015</u>	MW-22D-114 <u>6/17/2015</u>	MW-23D-92 <u>6/16/2015</u>	MW-100 (c) <u>6/16/2015</u>	MW-26D-105 <u>6/16/2015</u>	MW-27D-113 6/15/2015	MW-38-28 <u>6/16/2015</u>	MW-39-50 <u>6/16/2015</u>
1,1,1-Trichloroethane	200	2.1	3.8	27.3	30.1	2.5	1 U	1 U	1 U
1,1-Dichloroethane	90	8.8	1.7	35.2	2.1	7.1	1 U	8.2	1 U
1,1-Dichloroethene	7	89.2	23.1	198	191	73.3	1 U	1 U	1 U
1,2-Dichloroethane	5	1 U	1 U	1.9	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	6.7 (e)	66.4	18.7	131	147	58.8	2 U	56.7	2 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

a/ U = not detected at a concentration above the method detection limit.

Bolded number indicates concentration above the groundwater quality criteria.

b/ All concentrations in micrograms per liter (µg/l) c/ Sample and Duplicate

The duplicate of MW-23D-92 is identified as MW-100. The duplicate of MW-11-60 is identified as MW-101.

d/ MDE Groundwater Quality Criteria sources: http://www.mde.maryland.gov/assets/document/ Final%20Update%20No%202.1%20dated%205-20-08(1).pdi

Summary of COCs Detected in Groundwater Samples (2009 - 2015) Onsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Acetone	Benzene	Bromoform	2-Butanone (MEK)	Chloroethane	Chloroform	Chloromethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethene	cis-1,2-Dichloroethene	1,4- Dioxane	Ethylbenzene	lsopropylbenzene	p-lsopropyltoluene	Methylene Chloride	Methyl-tert-butyl Ether	Naphthalene
MW-1 May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND					ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND		ND ND ND NR NR NR NR NR NR NR NR NR	NR NR ND NR NR ND ND ND ND ND ND ND ND	NA NA NA NA NA ND 11.6 ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND		ND ND ND ND ND ND ND ND ND ND ND ND	
MW-1D Jun-12 Dec-12 Jul-13 Dec-13 (g) Jun-14 (g) Dec-14 (n) Jun-15 (n)	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	63 77 70.9 45.2 45.7 34.0 23.8	ND 6.4 6.2 4.40 4.70 4.00 2.80	310 380 389 288 320 209 206	NR NR NR NR NR NR	ND ND ND ND ND ND	430 422 439.0 290.0 (l) 326.0 (c) 279.0 (c) 187.0 (h)	ND ND ND ND ND ND	ND ND NA NA NA NA	NA ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
MW-2 May-09 Oct-09 May-10 Oct-10 Jun-11 Jun-12 (d) Dec-12 Jul-13 Dec-3 (h) Jun-14 (h) Dec-14 (h) Jun-15 (h)	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 17 ND ND 22 ND 7 ND ND ND ND	120 240 ND 280 130 62 47.6 29 28.7 29.3 43.1	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1,200\\ 2,900\\ 3,200\\ 3,400\\ 3,300\\ 1,600\\ 1,900\\ 880\\ 755\\ 486.0\\ 643.0\\ 567\\ 821.0 \end{array}$	9 12 16 15 ND 15 ND 10.3 5.60 8.50 7 7.50	600 1,200 1,800 2,000 2,200 1,800 1,900 820 890 457 678 528 832	7 12 15 ND NR NR NR NR NR NR NR	NR NR NR NR ND 5.6 ND ND ND ND	NA NA NA NA 1140 983 747 933.0 671.0 (i) 629.0 (c) 301 (c) 677.0 (c)	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND	3 5 ND ND 4.4 ND ND ND 16.3 ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND
MW-2D Jul-11 Nov-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	16 17 16 17 18.5 13.0 19.7 19.7 18.6	2 ND 2.0 2.1 1.50 1.80 1.80 1.50	120 130 130 130 170 118 166 147 139	ND NR NR NR NR NR NR NR	NR ND ND ND ND ND ND	NA 116 118 101 130.0 109.0 (h) 121.0 (n) 103.0 (n) 105.0 (n)	ND ND ND ND ND ND ND	ND ND ND NA NA NA NA	NA NA NA ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
MW-3 May-09 Oct-09 May-10 Oct-10 Jun-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND NR NR NR NR NR NR NR NR NR	NR NR NR ND ND ND ND ND ND ND ND ND	NA NA NA ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-4 May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 (g) Jun-15 (h)	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND			ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND 1.3 ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	130 150 290 130 81 87 68 100 108 67.0 198.0 (c) 38.2 108.0	ND 8 3 2 2 ND 2 2.3 1.40 7.20 ND ND	350 410 1,100 200 250 180 210 233 188 908 (c) 128 516	ND 3 ND ND NR NR NR NR NR NR NR NR NR	NR NR NR ND ND ND ND ND ND ND ND ND	NA NA NA 212 158 232.0 178.0 (h) 456.0 (h) 23.7 332.0 (c)	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-5 May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	9 11 12 8 7 4.1	ND ND ND ND ND	4 5 7 4 3 ND	ND ND ND ND NR	NR NR NR NR ND	NA NA NA NA 246	ND ND ND ND ND	ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND

WSP USA Corp. K:\Ernerson\Kop-Flex\Reporting\Status Reports\MDE Reports\2015\Progress Report 6\Tables\ Table 2_(Onsite monitoring well data) 070615

Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylene (total)	Total VOCs
ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	 12
ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	96 120 98.8 62.4 62.4 35.8 33.7	ND 1.6 1.5 ND ND ND ND	ND 1.7 1.8 ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	899 1,009 1,007 690 759 562 453
ND ND ND ND ND ND ND ND ND ND ND	3 7 11 ND 8 ND 3.6 4 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	150 380 520 2,700 ND 2,800 6,100 350 541 228.0 599.0 21 712.0	ND ND ND ND 1 ND ND ND ND ND ND	8 17 22 33 ND 22 ND 11 11.7 5.7 11.2 6 10.1	2 4 5 4 ND 6 ND 2.8 ND ND ND ND	ND 3 ND ND 3.3 ND ND ND ND ND ND	2,102 4,797 5,589 8,166 5,780 7,561 10,883 2,889 3,208 1,882 2,614 1,459 3,103
ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	28 27 28 23 23 15.9 26.9 20.2 20.1	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	166 292 273 344 257 335 292 284
ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	 8
ND ND ND ND ND ND ND ND ND ND ND	1 5 2 ND ND ND ND 3.2 ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	100 100 180 75 32 47 25 26 27.9 21.3 104.0 11.8 32.3	ND ND ND ND ND ND ND ND ND ND ND	3 8 3 2 2 ND 2 2.3 1.7 8.0 ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	584 667 1,591 573 317 600 431 528 606 457 1,686 202 988
ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	6 6 5 5 4	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	19 22 25 17 15 255

Summary of COCs Detected in Groundwater Samples (2009 - 2015) Onsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Acetone	Benzene	Bromoform	2-Butanone (MEK)	Chloroethane	Chloroform	Chloromethane	1,2-Dichlorobenzene	1, 3-Dichlorobenzene	1,4-Dichlorobenzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethene	cis-1,2-Dichloroethene	1,4- Dioxane	Ethylbenzene	Isopropylbenzene	p-lsopropyltoluene	Methylene Chloride	Methyl-tert-butyl Ether	Naphthalene
Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-6	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	7 3.4 3.3 2.9 3.0 2.8 3.1	ND ND ND ND ND ND	ND ND 2.2 1.5 1.9 1.7 1.9	NR NR NR NR NR NR	ND ND ND ND ND ND	211 245 205.0 137.0 (h) 92.3 91.2 69.9	ND ND ND ND ND ND	ND ND NA NA NA NA	NA ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
May-09 Oct-09 May-10 Oct-11 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND		ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND		ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NR RR NR NR NR NR NR NR NR	NR NR NR ND ND ND ND ND ND ND ND ND	NA NA NA ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-7 May-09 Oct-09 May-10 Oct-10 Jun-11 Jun-11 Dec-12 Jul-13 Dec-12 Jul-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND NR RR NR NR NR NR NR NR NR	NR NR NR ND ND ND ND ND ND ND ND	NA NA NA ND ND ND 2.4 ND 2.2 ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-8 May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 (g) Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND 3 2 ND 1.1 1.2 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	210 260 249 170 300 140 180 164 78.2 89.9 59.4 97.4	5 5 3 6 3 ND 4.1 4.4 2.00 1.90 1.60 2.10	250 310 240 350 190 150 210 208 129 142 111 177	1 1 ND NR NR NR NR NR NR NR NR NR NR	NR NR NR ND ND 1.2 ND ND ND ND	NA NA NA NA 361 445 418 456.0 254.0 (h) 219.0 (h) 190.0 249.0 (n)	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-9 May-09 Oct-09 May-10 Jun-11 Nov-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 (g)	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	1 ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	17 18 16 14 8 12 10.9 10.5 8.5 11.1 6.1	2 ND 2 1 ND 1.2 1.30 1.20 1.40 ND	250 300 240 290 220 160 150 170 181 193 179 143	ND ND ND NR NR NR NR NR NR NR NR NR	NR NR ND ND ND ND ND ND ND	NA NA NA 86 71.3 69.2 69.5 97.7 (h) 53.9 (h) 96.1 58.6 (n)	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND NA NA NA NA NA	NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND
May-09 Oct-09 May-10 Oct-10 Jun-11 Nov-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-11	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	6 ND ND ND ND ND ND ND ND ND ND ND ND ND		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND	4 3 4 4 ND 2.4 2.9 2.3 2.1 1.7	ND ND ND NR NR NR NR NR NR NR NR NR NR	NR NR NR ND ND ND ND ND ND ND ND	NA NA NA ND 3.3 ND 3.4 13.1 2.4 ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
May-09 Oct-09 May-10 Oct-10	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND 38 ND ND	ND 2 ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	67 620 130 110	9 16 10 9	740 2,100 750 540	2 8 3 2	NR NR NR NR	NA NA NA	ND ND ND ND	ND ND ND	NA NA NA	ND 4 ND ND	ND ND ND	ND ND ND ND

Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylene (total)	Total VOCs
ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND 2.2 2.4 1.8 2.5 2.0 2.5	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	218 251 213 143 100 98 77
ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	
ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	 2 2
ND ND ND ND ND ND ND ND ND ND ND	1 1 2 ND 1 ND 1.1 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	100 70 65 23 13 ND 9.0 6.4 4.7 3.3 2.0 3.6	ND ND ND ND ND ND ND ND ND ND ND	4 4 3 4 2 ND 3.1 3.6 1.8 1.6 1.3 2.0	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	571 566 401 688 711 735 824 846 471 458 365 531
ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	16 13 10 10 8 6 5.5 6.4 4.6 ND 9.4 4.9	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	286 332 268 318 330 245 238 258 295 257 297 213
ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	10 3 4 3 4 8 3 2 3 5 5 5 5 2
ND ND ND ND	ND 3 ND ND	ND ND ND ND	47 230 67 52	ND 2 ND ND	4 13 5 5	ND 1 ND ND	ND ND ND ND	869 3,037 965 718

Summary of COCs Detected in Groundwater Samples (2009 - 2015) Onsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Acetone	Benzene	Bromoform	2-Butanone (MEK)	Chloroethane	Chloroform	Chloromethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethene	cis-1,2-Dichloroethene	1,4- Dioxane	Ethylbenzene	lsopropylbenzene	p-isopropyltoluene	Methylene Chloride	Methyl-tert-butyl Ether	Naphthalene
Jun-11 Dec-11 Jun-12 (h) Dec-12 Jul-13 Dec-13 (c) Jun-14 (m) Dec-14 (c) Jun-15 (m)	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 40 11.6 38.1 ND ND ND	ND ND 1.9 1.4 ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	94 60 130 1,000 403 742.0 75.2 190.0 58.8	8 7 20 13 12.80 4.90 ND ND	720 430 730 1,800 1,360 1,520 442 695 342	2 NR NR NR NR NR NR NR	NR ND 12 7.2 10.5 ND ND ND	NA 575 487 1,160 787.0 1,000.0 372.0 (c) 397.0 (c) 314.0 (c)	ND ND ND ND ND ND ND ND	ND ND ND NA NA NA NA	NA NA NA ND ND ND ND	ND ND 6.7 ND 9 ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
May-09 Oct-09 May-10 Oct-10 Jun-11 Nov-11 Jun-12 (c) Dec-12 Jul-13 Dec-13 (l) Jun-14 (c) Dec-14 (l) Jun-15 (i)	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	7 5 ND 11 6 ND 30 152 52 83.6 145.0 ND	2 1 ND 2 3 ND 2.0 2.1 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	840 680 1,100 610 750 440 430 460 869 439.0 1,210.0 1,370.0 560.0	29 21 20 26 34 39 ND 31 39.2 26.20 43.50 37.50 ND	2,200 1,900 2,300 2,200 2,800 2,400 1,700 1,600 2,840 1,530 3,510 3,350 1,600	22 16 25 19 24 NR NR NR NR NR NR NR	NR NR NR 22 ND 35.2 ND 33.2 34.8 ND	NA NA NA NA 1,550 1,240 1,530.0 1,720.0 (i) 1,270.0 (n) 997.0	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND	3 2 ND 3 2 ND 6.6 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND
MW-14 May-09 Oct-09 May-10 Oct-10 Jun-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 3 5 5.8 5 ND 2.6 ND 2.2 ND ND	ND ND ND NR NR NR NR NR NR NR NR	NR NR NR ND ND ND ND ND ND ND ND	NA NA NA NA 6.9 7.4 3.6 3.0 ND 3.3 2.2 ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND
MW-15 Sep-10 Oct-10 Jun-11 Dec-11 Jun-12 (h) Dec-12 Jul-13 Dec-13 (g) Jun-14 (n) Dec-14 (m) Jun-15 (m)	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	4 ND 8 4 ND 11 ND 3 ND ND ND	1 ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	370 180 210 190 200 320 153 181.0 57.0 71.0 24.5	16 9 3 7 ND 5.2 ND 3.00 4.40 ND	1,300 670 300 530 540 465 289 433 (c) 318 313	9 5 2 NR NR NR NR NR NR NR	NR NR 3 ND 4.2 5.5 2.8 5.8 ND ND	NA NA 345 575 272 2,530.0 228.0 (h) 92.8 (g) 208.0 (n) 99.7 (n)	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND NA NA NA NA	NA NA NA NA ND ND ND ND	ND ND ND ND ND ND 10.2 ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND
MW-16 Sep-10 Oct-10 Jun-11 Dec-12 Jul-12 Jul-13 Dec-12 Jul-13 (k) Jun-14 (k) Dec-14 Jun-15 (p) MW-16D	ND ND ND ND 46.5 ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND 1.8 ND ND ND ND	23 ND 23 ND 18 ND ND 17 ND	480 660 ND 460 1,290 266 278 ND ND	13 ND 5.8 7.2 ND ND 2.2 ND	6 ND ND ND ND 2.7 ND ND ND	3 ND ND 1.7 ND 1.3 1.4 ND ND ND	ND ND ND ND 1.1 ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	8,300 4,900 3,400 8,200 4,300 14,000 3,600 2,050.0 3,850.0 5,910.0 (p) 6,820.0	57 42 ND 53 ND 52 61.3 ND ND 18.90 ND	16,000 12,000 19,000 18,000 14,000 17,900 19,400 16,400 4,670 (p) 15,700	67 52 NR NR NR NR NR NR NR	NR NR 59 ND 56 59.1 ND ND 32.6 ND	NA NA 1,930 2,050 1,740 2,260.0 2,840.0 (d) 1,570.0 (i) 451.0 (h) 1,600.0 (d)	22 ND ND 12 ND 7.6 9.9 ND ND ND 4 ND	10 ND 4.6 ND 3.3 NA NA NA NA	NA NA NA NA ND ND ND 2 ND	28 ND 30 ND 30 29.5 ND ND 7 ND		17 ND 7.1 ND 4.5 6 ND ND 3 ND
Jan-11 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 (n)	ND ND ND ND ND ND ND ND ND	ND ND 2 ND 1.3 ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	3 ND ND ND ND ND ND ND	4 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	110 100 72 49 55 54.3 43.2 57.6 90.0 54.3	4 4 ND 3 2.20 3.50 4.10 (n) 2.60	330 400 240 150 193 155 191 288 209	ND NR NR NR NR NR NR NR	NR ND ND ND ND ND ND ND	NA NA 267 215 189 246.0 218.0 (h) 232.0 (h) 251.0 (h) 225.0 (c)	ND ND ND ND ND ND ND ND ND	ND ND ND ND NA NA NA NA NA	NA NA NA ND ND ND ND ND	8 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	2 ND ND ND ND ND ND ND
Sep-10 Oct-10 Jun-11 Nov-11 Jun-12 (c) Dec-12 Jul-13 Dec-13	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 1 ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	10 3 46 ND ND ND ND	ND ND ND ND ND ND ND	7 5 2 41 ND ND 1.6 ND	ND ND NR NR NR NR NR NR	NR NR ND ND ND ND ND	NA NA 22 10.2 4.4 4.3 ND	ND ND ND ND ND ND ND	ND ND ND ND ND NA NA	NA NA NA NA NA ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND

Naphthalene	Tetrachloroethene	Toluene	,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylene (total)	otal VOCs
ND ND ND ND ND ND ND ND ND	ND ND ND 4 1.6 ND ND ND ND	ND ND ND ND ND ND ND ND ND	29 16 35 300 103 343.0 21.7 28.8 7.7	ND ND 2.9 1 ND ND ND ND	3 ND ND 13 8.8 10.3 ND ND ND	ND ND ND ND 1.6 ND ND ND ND	X ND ND ND ND ND ND ND ND	856 1,088 1,382 4,360 2,699 3,677 925 1,311 723
ND ND ND ND ND ND ND ND ND ND ND ND	4 3 4 3 3 ND 2.0 4 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	120 87 160 110 85 63 48 77.2 41.8 125.0 78.8 59.4	3 2 ND 2 3 4 ND 3.3 3.2 ND ND ND	16 13 9 13 16 17 ND 13 16.7 ND 17.8 ND ND	2 2 2 2 2 ND 2.6 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	3,248 2,732 3,621 2,985 3,758 4,573 3,323 3,448 5,578 3,809 5,205 6,286 3,216
ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	 3 5 5 13 12 4 6 6 2
ND ND ND ND ND ND ND ND ND	4 2 ND 1 ND 1.2 ND ND ND ND	ND ND ND ND ND ND ND ND ND	27 22 51 48 47 150 43.2 107.0 13.7 20.7 6.7	2 ND ND ND ND ND ND ND ND	15 7 2 4.7 ND 5.2 ND 2.4 ND ND ND	1 ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	1,749 897 576 1,133 1,322 1,309 3,197 817 617 618 444
17 ND 7.1 4.5 6 ND ND 3 ND	250 140 ND 110 ND 69 83.8 ND ND 30.7 ND	7 ND 4.2 ND 3.4 4.4 ND ND 1.6 ND	160,000 71,000 21,000 41,000 29,400 12,000.0 30,500.0 15,000.0 (p) 14,700.0	4 3 ND 3.5 4.3 ND ND ND ND	370 190 220 ND 160 ND 213.0 63.8 ND	ND 6 ND 14 ND 9.2 17.7 ND ND 5.1 ND	101 ND 57 ND 36 46.2 ND ND 17 ND	185,758 88,333 44,190 129,295 58,350 60,661 54,832 36,556 52,811 26,236 38,820
2 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	82 75 64 33 29 23.8 21.3 28.9 44.3 25.6	ND ND ND ND ND ND ND ND	2 2 ND ND ND ND ND 1.8 ND	ND ND ND ND ND ND ND ND ND	3 ND ND ND ND ND ND ND ND	548 581 650 447 520 440 513 679 517
ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	7 2 22 23 ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	24 10 4 132 33 4 6

Summary of COCs Detected in Groundwater Samples (2009 - 2015) Onsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Acetone	Benzene	Bromoform	2-Butanone (MEK)	Chloroethane	Chloroform	Chloromethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethene	cis-1,2-Dichloroethene	1,4- Dioxane	Ethylbenzene	Isopropylbenzene	p-lsopropyltoluene	Methylene Chloride	Methyl-tert-butyl Ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene
Jun-14 Dec-14 Jun-15 MW-17D	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	2.4 ND ND	NR NR NR	ND ND ND	34.3 2.5 ND	ND ND ND	NA NA NA	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	1 1
Sep-10 Oct-10 Jun-11 Nov-11 Jun-12 (c) Dec-12 Jul-13 Dec-13 (m) Jun-14 (c) Dec-14 Jun-15 (h) WW18	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	4 ND 15 ND 41 68.4 37 ND 2 ND	1 ND 1 1.3 1.3 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	150 190 290 270 490 326.0 143.0 66.2 51.7	12 13 ND 14 ND 17 17 13.60 10.20 4.60 ND	940 1,300 2,100 1,900 1,000 1,800 2,310 2,310 2,100 1,260 484 399	7 9 ND NR NR NR NR NR NR NR	NR NR 14 ND 19 22.3 16.8 ND 3.8 ND	NA NA 575 618 669 612.0 592.0 (I) 435.0 23.3 220.0	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND NA NA NA NA	NA NA NA NA ND ND ND ND	5 ND 3 ND 4.7 6.6 ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	1 2 ND 3 ND 1.5 2 ND ND ND	ND ND ND ND ND ND ND ND ND	26 42 29 38 ND 36.0 36.2 22.6 ND 4.3 ND	ND ND 2 ND ND ND ND ND ND ND	ר 1(ז ג ג
Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-19	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	NR NR NR NR NR NR NR	ND ND ND ND ND ND ND	13.6 ND ND ND 4.6 ND ND	ND ND ND ND ND ND ND	ND ND NA NA NA NA NA	NA NA ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	7 7 7 7 7
Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-20	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	8 ND 6 3.5 3.7 4.0 4.5	NR NR NR NR NR NR NR	ND ND ND ND ND ND ND	5.9 4.0 3.6 5.5 4.1 6.3 4.2 2.9	ND ND ND ND ND ND ND	ND ND NA NA NA NA	NA NA ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	7 7 7 7
Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 (g) Jun-14 (g) Dec-14 (m) Jun-15 (m)	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 8.5 30 83.8 121.0 173.0 166.0 186.0	ND ND 3.1 6.2 7.00 8.80 9.30 9.00	ND 51 120 255 333 359 302 342	NR NR NR NR NR NR NR	ND ND 1.5 ND 2.1 ND ND	11.9 272 506 845.0 1,230.0 (i) 1,010.0 (i) 660.0 (i) 1,260.0 (i)	ND ND ND ND ND ND ND	ND ND NA NA NA NA	NA NA ND ND ND ND	ND ND ND ND 5.6 ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 2 2.5 3.3 ND ND	
MW-21D Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-22D	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	12 14 11.9 10.1 8.3 10.4 8.8	ND ND ND ND ND ND	90 90 102 82.4 76.5 105.0 89.2	NR NR NR NR NR NR	ND ND ND ND ND ND	84.2 81.8 80.1 70.0 77.0 (g) 138.0 66.4 (n)	ND ND ND ND ND ND	ND ND NA NA NA NA	NA ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	8 5.7 5 4.1 2.8 3.2 2.1	ND ND ND ND ND ND	7 7 7 7
Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-23D	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND 4.5 2.7 3.7 3.5 2.0 1.7	ND ND ND ND ND ND	27 38 34.2 43.5 44.2 27.0 23.1	NR NR NR NR NR NR	ND ND ND ND ND ND	29 41 31.8 35.3 (g) 39.3 22.8 18.7	ND ND ND	ND ND NA NA NA NA	NA ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	8 10 6.5 8.4 9.0 4.2 3.8	ND ND ND ND ND ND	7 7 7 7
Jun-12 Aug-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND	ND ND ND ND 1.2 ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND 1.5 ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	29 39 32 32.7 25.6 29.1 28.3 35.2	ND 2.2 2.0 2.3 1.7 2.3 1.90 1.90	120 130 110 131 101 101 157.0 198	NR NR NR NR NR NR NR	ND ND ND ND ND ND ND	149 NA 130 186.0 165.0 (h) 132.0 (g) 151.0 131.0 (n)	ND ND ND ND ND ND ND	ND ND NA NA NA NA	NA NA ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	36 35 31 28.6 21.3 24.7 26.5 27.3	ND ND ND ND ND ND ND	7 7 7 7 7
MW-24D Jun-12 (c) Aug-12 Dec-12 Jul-13 Dec-13 (c) Jun-14 (c) Dec-14 (l) Jun-15 (l)	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND 1.3 1.2 ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 72 61 57.7 47.4 57.3 106.0 92.5	ND 13 12 10.8 ND 11.3 ND ND	1,300 1,600 1,500 1,520 1,190 1,510 2,640 2,100	NR NR NR NR NR NR NR	ND 6.7 6.2 ND ND ND	342 NA 393 470.0 433.0 488.0 657.0 (c) 728.0 (c)	ND ND ND ND ND ND ND	ND ND NA NA NA NA	NA NA ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 1.7 1.8 1.4 ND ND ND	ND ND ND ND ND ND ND	53 60 62 48.7 34.1 43.4 60.9 53.3	ND 1.5 1.3 ND ND ND ND	12 1(14 1
MW-27D Sep-13 Dec-13 Jun-14 Dec-14	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	2.1 ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	0.17 J ND ND ND	ND ND ND ND	NR NR NR NR	ND ND ND ND	0.9 J ND ND ND	ND ND ND ND	NA NA NA	ND ND ND ND	ND ND ND ND	1.3 1.4 1.6 ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	יז יי יי

WSP USA Corp. K\Emerson\Kop-Flex\Reporting\Status Reports\MDE Reports\2015\Progress Report 6\Tables\ Table 2_(Onsite monitoring well data) 070615

	DD DD 26 42 29 ND 200 ZD DD ZD ZD ZD ZD DD ZD ZD ZD DD ZD ZD	13333333333333333333333333333333333333	Luichloroethene DA DA DA DA DA DA DA DA DA DA DA DA DA			377 3 1,1566 2,419 2,847 1,908 3,071 3,584 3,116 1,848 591 671 14
ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	 14 4 12 8 10 8 7
ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND 2 2.5 3.3 ND ND	ND ND ND ND 2.1 ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	12 332 659 1,194 1,694 1,564 1,137 1,797
ND ND ND ND ND ND	8 5.7 5 4.1 2.8 3.2 2.1	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	194 192 199 167 165 257 167
ND ND ND ND ND ND	8 10 6.5 8.4 9.0 4.2 3.8	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	64 94 75 91 96 56 47
ND ND ND ND ND ND ND	36 35 31 28.6 21.3 24.7 26.5 27.3	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	334 206 305 382 315 290 365 393
ND ND ND ND ND ND	53 60 62 48.7 34.1 43.4 60.9 53.3	ND 1.5 1.3 ND ND ND ND	ND 13 16 12.4 10.1 14.2 ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	1,695 1,767 2,055 2,130 1,715 2,124 3,464 2,974
ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	4 1 2

Summary of COCs Detected in Groundwater Samples (2009 - 2015) Onsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Acetone	Benzene	Bromoform	2-Butanone (MEK)	Chloroethane	Chloroform	Chloromethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethene	cis-1,2-Dich loroethene	1,4- Dioxane	Ethylbenzene	Isopropylbenzene	p-lsopropyltoluene	Methylene Chloride	Methyl-tert-butyl Ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	Xylene (total)	Total VOCs
Jun-15 MW-26D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MW-26D Mar-13 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-38	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	12.4 13.5 6.9 5.2 7.5 7.1	ND ND ND ND ND	98.2 120 51.5 42.4 78.1 73.3	NR NR NR NR NR	ND ND ND ND ND	118.0 99.2 60.7 39.8 73.0 58.8	ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	5.6 ND ND ND ND	6.3 6.6 2.7 1.8 2.8 2.5	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	241 239 122 89 161 142
Jun-14 Dec-14 Jun-15 MW-39	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	9.5 8.7 8.2	ND ND ND	ND ND ND	NR NR NR	ND ND ND	51.8 68.7 56.7	ND ND ND	NA NA NA	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	61 77 65
Jun-14 Dec-14 Jun-15	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	3.2 ND ND	NR NR NR	ND ND ND	6.3 ND ND	ND ND ND	NA NA NA	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	10
a/ all samples meas all samples collec e = as estimated E = result exceed ND = not detecter NA = not analyze NR = constituent b/suspected laborat c/ sample run at a 10 f/sample run at a 25 g/sample run at a 25 k/sample run at a 20 k/sample run at 20x m/sample run at 20x m/sample run at 20x p/sample run at 20x	tted using low below the dett is calibration r d; NA = Not at d ory contamine ox dilution c dilution c dilution c dilution c dilution c dilution dilution dilution c dilution c dilution c dilution	-flow purging t ection limit; range nalyzed	echniques																											

Summary of Off-Property Monitoring Well Sample Results June 2015 Sampling Event Kop-Flex VCP Site Hanover, Maryland

Analyte (b)	Groundwater <u>Quality Criteria (ug/L)</u>	MW-24D-128 6/19/2015	MW-25-40 <u>6/24/2015</u>	MW-25-130 <u>6/24/2015</u>	MW-25-190 <u>6/25/2015</u>	MW-28-45 <u>6/23/2015</u>	MW-28-210 <u>6/23/2015</u>	MW-31-280 <u>6/24/2015</u>
1,1,1-Trichloroethane	200	53.3	1 U	46.3	14.2	1 U	1 U	1 U
1,1-Dichloroethane	90	92.5	1 U	37.1	11.9	1 U	1 U	1 U
1,1-Dichloroethene	7	2,100	1 U	1,030	59.4	1 U	12.8	1 U
1,2-Dichloroethane	5	20 U	1 U	8.9	1 U	1 U	1 U	1 U
Trichloroethene	5	20 U	1 U	6.8	1 U	1 U	1 U	1 U
1,4-Dioxane	6.7 (d)	728	2 U	303	39.8	2 U	4.5	2 U
Tetrachloroethene	5	20 U	1 U	1 U	1 U	1 U	1 U	1 U

a/U = not detected at a concentration above the method detection limit

Bolded number indicates concentration above the groundwater quality criteria

b/ All concentrations in micrograms per liter (µg/l)

c/ Groundwater Quality Criteria sources:

RSLs: http://www.mde.maryland.gov/assets/document/Final%20Update%20No%202.1%20dated%205-20-08(1).pdf

MW-33-235	MW-33-295	MW-35-298
<u>6/23/2015</u>	<u>6/23/2015</u>	<u>6/22/2015</u>
1 U	1 U	1 U
1 U	1 U	1 U
1 U	3.3	1 U
1 U	1 U	1 U
1 U	1 U	1 U
2 U	6.8	2 U
1 U	1 U	1 U

Summary of COCs Detected in Groundwater Samples Offsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Chloroform	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,4- Dioxane	Methylene Chloride	Methyl-tert-butyl Ether	Tetrachloroethene	1,1,1-Trichloroethane
MW-24D											
Jun-12 (c) Aug-12 Dec-12 Jul-13 Dec-13 (c) Jun-14 (c) Dec-14 (b) Jun-15 (b)	ND ND 1.3 1.2 ND ND ND	ND 72 61 57.7 47.4 57.3 106.0 92.5	ND 13 12 10.8 ND 11.3 ND ND	1,300 1,600 1,500 1,520 1,190 1,510 2,640 2,100	ND 6 6.7 6.2 ND ND ND ND	ND ND 1.1 ND ND ND	342 NA 393 470.0 433.0 488.0 657.0 (c) 728.0 (c)	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 1.7 1.8 1.4 ND ND ND	53 60 62 48.7 34.1 43.4 60.9 53.3
MW-25-40 Sep-14	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	ND
Dec-14 Mar-15	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	1.5 1.5 ND	ND ND	ND ND
Jun-15	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND
MW-25-130											
Sep-14 Dec-14 (c) Mar-15 (c)	1.5 ND ND	47.0 31.4 38.6	12.3 ND 10.8	1,140.0 799.0 854.0	6.1 ND ND	ND ND ND	492.0 349.0 446.0	ND 25.5 66.8	ND ND ND	1.1 ND ND	64.2 33.4 43.5
Jun-15 (d) MW-25-190	1.1	37.1	8.9	1,030.0	4.6	ND	303.0	66.8	ND	ND	46.3
Sep-14 Dec-14 Mar-15 Jun-15	ND ND ND ND	10.8 13.3 11.7 11.9	ND ND ND ND	52.2 58.2 53.0 59.4	ND ND ND ND	ND ND ND ND	65.1 45.9 49.4 39.8	ND ND ND ND	ND ND ND ND	ND ND ND ND	14.0 15.6 13.7 14.2
MW-28-45 Sep-14	ND	ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND
Dec-14 Mar-15	ND ND	ND ND ND		ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND
Jun-15 MW-28-210	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sep-14 Dec-14	ND ND	ND ND	ND ND	6.8 9.4	ND ND	ND ND	5.1 4.1	ND ND	ND ND	ND ND	ND ND
Mar-15 Jun-15	ND ND	ND ND	ND ND	10.8 12.8	ND ND	ND ND	6.0 4.5	ND ND	ND ND	ND ND	ND ND
MW-31-280											
Sep-14 Dec-14	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.4	ND ND	ND ND	ND ND	ND ND
Mar-15 Jun-15	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW-33-235											

WSP USA Corp.

K:\Emerson\Kop-Flex\Reporting\Status Reports\MDE Reports\2015\Progress Report 6\Tables\ Table 4_(Offsite monitoring well data) 072215

1,1,2-Trichloroethane	Trichloroethene	Total VOCs
ND 1.5 1.3 ND ND ND	ND 13 16 12.4 10.1 14.2 ND ND	1,695 1,767 2,055 2,131 1,715 2,124 3,464 2,974
ND	ND	2
ND	ND	2
ND	ND	
ND	ND	1
2.0	11.2	1,777
ND	ND	1,238
ND	ND	1,460
1.2	6.8	1,506
ND	ND	142
ND	ND	133
ND	ND	128
ND	ND	125
ND ND ND ND	ND ND ND ND	7
ND	ND	12
ND	ND	14
ND	ND	17
ND	ND	17
ND ND ND ND	ND ND ND ND	2

Summary of COCs Detected in Groundwater Samples Offsite Monitoring Wells Kop-Flex VCP Site Hanover, Maryland (a)

Monitoring Well	Chloroform	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,4- Dioxane	Methylene Chloride	Methyl-tert-butyl Ether	Tetrachloroethene	1,1,1-Trichloroethane
Sep-14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dec-14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mar-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Jun-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-33-295				0.0			7.0				
Sep-14 Dec-14	ND ND	ND ND	ND ND	3.3 3.5	ND ND	ND ND	7.2 7.1	ND ND	ND ND	ND ND	ND ND
Mar-15	ND	ND	ND	4.8	ND	ND	8.0	ND	ND	ND	ND
Jun-15	ND	ND	ND	3.3	ND	ND	6.8	ND	ND	ND	ND
MW-35-298		ND	ND	0.0	ND	ND	0.0				ND
Sep-14	ND	ND	ND	ND	ND	ND	36.7	ND	ND	ND	ND
Dec-14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mar-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Jun-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

a/ all samples collected using low-flow purging techniques and measured in ppb (ug/L);

ND = not detected; NA = not analyzed; e = estimated as below reporting limit

--- = no VOCs detected above the detection limit

b/sample run at 20x dilution

c/ sample run at a 10x dilution

d/sample run at 12.5x dilution

1,1,2-Trichloroethane	Trichloroethene	Total VOCs
ND ND ND ND	ND ND ND ND	
ND ND ND ND	ND ND ND ND	11 11 13 10
ND ND ND ND	ND ND ND ND	37

Enclosure A – Laboratory Report for June 2015 Onsite and Offsite Monitoring Well Samples

Enclosure B – Laboratory Report for Residential Well Sample from 763 Donaldson Avenue (June 2015)